AD-A103 17% SRI INTERNATIONAL MENLO PARK CA E/6 972
AUTOMATIC PALMPRINT VERIFICATION STUDY.(U)
JUN 81 J R YOUNGs R W HAMMON

F30602=-79=C-0207
UNCLASSIFIED RADC-TR-81-161 NL

Ve !
an &
s va

END '

oo, LEVEEZ / ‘..

Final Technical Report
June 1981

AUTOMATIC PALMPRINT
VERIFICATION STUDY

ADA103174

SRl International

James R. Young
Robert W. Hammon

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command |
Griffiss Air Force Base, New York 1344i

)] 4 FLE COPY

1 818 21 0o8

b N I i Rt R RO 0, T SRR - e T e e g1 s

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-161 has been reviewed and is approved for publicationm.

APPROVED: },—/\, 4/. ‘7{&1,%3‘;

JOHN V. FERRANTE, 1Lt, USAF

Project Engineer

JOHN N. ENTZMINGER
Technical Director
Intelligence and Reconnaigssance Division

APPROVED:

FOR THE COMMANDER: ‘dv _p # o

JOHN P, HUSS
Acting Chief, Plans Office

‘If your address has changed or if you wish to be removed from the RADC
mailing 1ist, or if the addressee is no longer employed by your organization,
please notify RADC. (IRAA) Griffiss AFB NY 13441. This will assist us in
msintaining a current mailing list.

Do mot return this copy. Retain or destroy.

.= ol gy

¥

Y AR AL O S e

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
(] 7_REPORT DOCUMENTATION PAGE BEr DS TRUCTIONS v
{1 _RERQRY ju 2. GOVT ACCESSION NO. j?s CATALOG NUMBER
¢
@ RADCHTR-81- 1612 - - ﬂiﬂu (4
D Rl (72 k Tosy vy ~voc
4
(é AUTOMATIC ;ALMPRBE JERIFICATION STUDY. ' ’L Aug 79——Jan 81

4 - <‘~ - - =

o A w./ﬁamon L// F30602-79~C 020!7/ ,

~ 9. PERPORMWO-ORGANI ZATION NAME AND ADDRESS 10. ::gin&ArOERLKE'JSI"TT'NPURMOBJEERCST' TASK
SRI International -‘1FQZZJOH
333 Ravenswood / ¢ | DNARD211 ? o
Menlo Park CA 94025 O ~- §Z !
11. CONTROLLING OFFICE NAME AND ADDRESS /f- Y1 RERORTDAIE
Rome Air Development Center (IRAA) f/y,_Juna W81 4[
Griffiss AFB NY 13441 S T~ woweenemedces

SR Lol

. 1. SRI Project 8788 -
. 'ﬁ’——\ 8. CONTRACT OR GRANT NUMBER(s)
e 4.t firrc; R./ oung . X :)

94

4. MONITORING AGENCY NAME & ADDRESS(if difterent from Controlling Office) 15. SECURITY CL ASS. (of this report)

Same g 77 UNCLASSIFIED
o 15a, DECLASSIHCATION DOWNGRADING
/...» N/Ascnsou

16. DISTRIBYUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: John V. Ferrante, 1Lt, USAF (IRAA)

N

19 XEY WORDS (Continue on reverse aide if necessary and identlfy by block number) ,"
Optical Processing Statistical Analysis 5

Access Control Feature Extraction
Data Reduction

. ABSTRACT (Continue on reverse side il necessary and identify by bdlock number)

A computer-based system has been created using 29 features of hand
geometry to discriminate successfully 278 images of hands taken from
30 male and female subjects over a four-month period. These features
include hand perimeter and area measures, finger lengths and widths,
palm widths, and certain ratios of lengths and widths. A linear dis-

criminant procedure was used to classify all images according to the
subjects from which the images were taken. All images were correctly —:15

DD . on's; 1473 EciTioN OF 1 NOV 68 13 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Enter

+ Byl ko 1opd Nmn,,wmww' e RS

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

4 classified for 100% results.

1 as,

L W

UNCLASSIFIED

SECURITY CLASSIFICATION OF Yu't PAGE(When Datas Entered)

LIST OF ILLUSTRATIONS

ACKNOWLEDGMENT

I INTRODUCTION

IT DATA COLLECTION

III DATA PREPARATION

A. Data Generation

B. Data Reduction
IV DATA ANALYSIS
V CULASSIFICATION RESULTS . .

VI COMPUTER PROGRAM SUMMARIES .
A. HIST . « v v v v v ..
B. THRESH
C. LINEBYLINE
D. SCAN . « v v v u . ..

APPENDICES
A--COMPUTER PROGRAM LISTINGS .

B--DOCUMENTATION OF LINEBYLINE

C~-ANNOTATIONS FOR THE SEPARATE
(Submitted Separately) . . .

Y TR A T e - -

CONTENTS

« e e e e v
. vii
.. 1

. . o« o e . . . 3

e e e s 7
e+ e e e e . e e . . . 8

e e e e e e e .« .. 20
o e e e e e s 20
f e e e e e e e s . A-1
e b e e e e e e e e e e e e B-1

SPSS RESULT PACKAGE

e 4 & e s & s s e s s s e e . Cc-1 P

Accessioﬁhgor)
rVN’I‘IS GRAXI f

DTIC TAR M
Unannauneed [_",
Justificalion. .

|

By e
| Distribution/

Avalls’ L ily Codes

—

! Avorl onldsor
Lig Srocial

111

H

Lar. = A e

oA IS e =%

ILLUSTRATIONS

1 Apparatus Used for Data Collection o « . 4

2 Fingertip Location Measurement « « ¢ « & &+ ¢ « & & 10

3 Measurement Points for Lengths of Finger and Thumb 10

4 Finger and Thumb Width Measurement Points 11

5 Curvature and Distance Measures « « « + ¢ & o &« 12

6 Analysis of Hand Geometry Features « + & o & 14

7 Analysis of Hand Geometry Features Using Within-Groups

Correlation Matrix & ¢ ¢ v ¢ o v v v v e e e e 16

?
;
; ' ‘ PRECEDING PAJE BANK-NOT F1LMD
! e
t ;

ACKNOWLEDGMENT

With appreciation, the authors gratefully acknowledge the substan-

tial contributions of the following toward the research reported in

this document:

Dr. John Ostrem served as a consultant on feature-extraction
methods, on data analysis, and--particularly~-on the use of
commercial software used in the statistical analysis of the
feature-extraction results.

Mr. Gregory Myers supplied the computer program LINEBYLINE

and provided guidance in its application to this research.

He also gave valuable help and advice in feature selection

and analysis.

Mr. Zev Pressman gave valuable guidance in the design of the
data-collection apparatus and in its initial adjustment and
evaluation.

Mr. Marshall Wilson recruited subjects, photographed the
subjects’ hands, coordinated the film processing, and cataloged
all of the data in the data base.

g I TRt ¢

;
&
e
b

I
i

I INTRODUCTION

This report describes a one-year research and development effort to
determine the feasibility of using hand geometry and other features of
the hand as bases for the construction of an automatic personnel authen-
tication system for access control. The subsequent sections of the
report describe the method and extent of data collection, the method of
data preparation and reduction, the data analysis, the experimental
authentication results, and provide brief descriptions of the computer

programs that were written for this work.

The appendices are photocopies of listings of the computer programs
used and of critical parts of the experimental statistical analysis and

raw data.

1T DATA COLLECTION

Previous access-control systems using hand geometry or fingerprints
have used devices that capture data from physical contact with or proximity
to the hand surfaces being measured. Such contact or closeness can dis-
tort the measurements, particularly if the hand can move or exert pressure.
A measurement system that can avoid distorting the features being measured
will be more reliable, which in turn will reduce the occurrence of incor-

rect authentication decisions.

Precise orientation of the hand in space and precise control of finger
and thumb spread are difficult to accomplish without some mechanical device,
however. To compensate for the variable position of the hand from trial to
trial (because there was no device to hold it in a fixed poéition) it was
decided to concentrate on adjusting the data. Precise data reduction would
allow easier and more natural interaction between the person seeking auth-

entication and the access-control system,

The system used to collect data is schematically illustrated in Fig-
ure 1. The subject's hand 1is positioned near the light diffuser; the open
palm faces the camera and the fingers are comfortably spread. The subject's
name and session number are displayed in the upper quarter of the imaged

area and thus become an integral part of the data base.

The data base collected contains 50 subjects, 25 males and 25 females,
ranging in age from the early 20s to 65, in height from approximately 5’
to 6'3", and in weight over a normally observed distribution. The total
number of sessions (five trials per session) was 1020, approximately evenly
divided between males and females. Of these, 997 sessions produced 4985
high-quality images with full gray scale. In the remaining sessions, flash
problems of failure to fire or synchronization incurred; the resultant

images were quite useful for geometric measurements but contain no gray-

scale features.

L e L e

VIVITAR MODEL 102 ELECTRONIC FLASH
WITH A 0.7 NEUTRAL DENSITY FILTER

RIS HONEYWELL PENTAX H1a 35mm SLR CAMERA
/& WITH 85mm f 1:2 ASAHI (SUPER-TAKUMAR) LENS

875 cm 4

35 X 28 cm DIFFUSER BACKLIGHTED WITH
FIVE 100W SOFT-WHITE BULBS

APERTURE = t/16
SHUTTER SPEED = 1/30s

FILM: KODAK HIGH-CONTRAST
COPY FiLM 8068

OBJECT MAGNIFICATION: 0.07

FIGURE 1 APPARATUS USED FOR'DATA COLLECTION

o,

E
[

Negative images have been cataloged and stored in three volumes that

were designed and manufactured for such use. Photo development followed

standard procedures for the black-and-white high-contrast copy film

(Kodak 5069). The film manufacturer states that if storage conditions
are correct (cool and dry) the archival qualities of this film are ex-

cellent--it will retain quality for more than 30 years.

Image quality is also excellent.

Correctly focused and exposed nega-
tives have been examined with a 400X microscope, and minutiae are clearly
visible on fingertips.

— - *“-j

LN e

S

Jugn. e

2

III

DATA PREPARATION

A. Data Generation

Two methods were used to obtain digital-image data to be used for !

further processing.

e An SRI-built Reticon CCD array scanner (512 elements per line)
interfaced to an LSI-~1l was used early in the project.

o

e A commercially available Eikonix digitizer (1024-element Reticon
x 1500 scan steps) was used to supply final evaluation data.

Data from the first system were generally unsatisfactory because of
a combination of problems. The system interface included a hardware
thresholder for the analog data generated by the Reticon array. The
user can vary the threshold, but it is uniform for all samples coming |
from the CCD array. Such an arrangement works well only if the image area

is uniformly lighted, the individual CCD elements are reasonably uniform in

sensitivity, and the scanned images have equivalent niecom densities.
Unfortunately, these conditions were not satisfied, and the uniform hard-
ware threshold was found to be quite unsatisfactory. It is probably
possible to build a system that utilizes a fixed-level threshold for this
type of application; however, such a device with a sufficiently uniform
large field of view was not available, and the uniform-threshold technique

».
has therefore not been thoroughly evaluateg

The Eikonix digitizer is an excellent instrument for purposes of

this study. The digitized images generated are 1024 x 1500-element data
each with 8 bits of gray scale recorded on magnetic tape. The real reso-
lution of the data when the film negatives are sampled with this spatial j
frequency is two pixels (picture elements) per mm. The system can |
automatically compensate for lighting nonuniformities and variable CCD-

element sensitivities. It is also fairly fast: one complete cycle of i
generating and recording an image requires about one minute. All of the

data used to generate the results appearing in this report were collected

through the Eikonix system.

FRECEDING PAGE ELANK=-NOT FILMED

B. Data Reduction

Image data on magnetic tapes were transported to a PDP 11/40 computer

system in SRI's Bioengineering Research Center. Each image was reduced
by extracting the pertinent 512 x S512-element field and by thresholding
to a binary image. Finally the binary image was reduced to a hand-

perimeter list of X-Y coordinates that was stored on a DEC RK 05 disk.
Although this process is somewhat involved, it does provide final data
that are quite reliable and easy to work with in subsequent computations.

(It is to be noted that the final data set generated by this procedure

does not include any information about a subject's hand other than the

perimeter coordinates in a 512 x 512-element field.)

R~y

A very important feature of the data-reduction process is the method
used to compute the perimeter list from a 512 x 512-element hand image.
The method involves using a computer program (LINEBYLINE) that was de-
veloped earlier at SRI and recently rewritten in PASCAL for use on the
PDP 11/40. The program generates the perimeter list while accessiﬁg the

image data one line at a time, starting at one edge of the field. This v
implies, for a practical system, that a minimum of memory and data buffer-

ing is required; consequently, ‘there is a significant saving of money and

execution time.

IV DATA ANALYSIS

The basis for the analysis and the geometric features that have
been extracted is, in each case, a list of the X-Y coordinates of the
hand perimeter. Such a perimeter is described with a real resolution

of two pixels per mm.

All measurements are based on landmarks that are easily identified
on the perimeter; the tips of the fingers and thumb were selected for
this study. These landmarks were identified by calculating a coarse
curvature function over the perimeter and finding criterion shifts in
the angle of a tangent to the perimeter. Tangents were estimated by
passing an 18-point window over the perimeter and using the window end
points to define a vector in the X-Y image plane. The window was moved
in nine-point increments. This analysis gives a rough estimate of the

tip location.

The rough estimate is refined by locating four additional points

on the finger, two found 25 mm away along the perimeter on each side

of the estimated tlp and two more found 35 mm away on each side. The
virtual lines connecting each pair of points are bisected, and the inter-
section of the tip and the line defined by the bisectinn points is de-
fined to be the actual tip location. This process is illustrated in
Figure 2. After a precise location for each tip is established, the

following features can be extracted:

i

¢ Features 1 through 5 are lengths of the fingers and thumb,
starting with the little finger. Lengths are measured from
the tip to the depth of the interdigital space as illustrated
in Figure 3.

® Features 6 through 10 are widths of the fingers and thumb.
A width is the distance between two points on the perimeter
of a finger; the points are 45 mm down the perimeter on each
side of the tips of the little finger and the thumb, and 60 mm
on each side of the other f _ertips. Width measurement
points are illustrated in Figure 4. These features are
ordered as were the first five,

© ¥

BRI — <+ rp— . = " s - P —y ,"\mﬁw"'t,?t"'“"‘ sy G A 57 i

FINAL TiP POSITION

/ \ROUGH ESTIMATE OF TIP

10mm 25mm

FIGURE 2 FINGERTIP LOCATION MEASUREMENT

FIGURE 3 MEASUREMENT POINTS FOR LENGTHS
OF FINGERS AND THUMB

[OV

FIGURE 4 FINGER AND THUMB WIDTH MEASUREMENT
POINTS

Features 11 through 15 are ratios of the measurements of finger
lengths to widths.

Feature 16 is the hand width measured between two points on the
palm. One point is 9 cm on the perimeter from the tip of the
little finger toward the wrist and the other is 11 cm on the
perimeter from the tip of the index finger toward the thumb.
These points are labeled 2 and 11, respectively, in Figure 4.

Features 17, 18, and 19 are the hand perimeter, hand area, and
the ratio of the squared-perimeter length to the area. The
perimeter and area are measured from point 1 to point 14 in
Figure 4. Point 1 is 13 cm on the perimeter from the tip of
the little finger, and point 14 is 10 cm on the perimeter from
the tip of the thumb.

Ten features, 20 through 29, are paired values corresponding
to the curvature of each fingertip and the distance over which
the tip shape can be represented by a circular arc with less
than a criterion value of rms (root mean square) error. The
process of extracting a typical feature pair is illustrated in
Figure 5. A tangent to the perimeter, such as T, has an angle,
a, as shown. If a is plotted as a function of distance along
the perimeter defining a finger, then a plot such as the one
shown in Figure 5 results. The slope of the plot between Py
and P, is related to the curvature of the tip. The slope is
recorded as the curvature. A correlation calculation cver the
region containing this characteristic region yields a high value

11

.

il

=
e

PRPI N

4 e e e et e

—

=)

(3 —

s

g !

Q

Z |

<]

[

z | :

W

Q { [}

z '

< ! H

- '
I - s
P.‘ P2 P

PERIMETER

FIGURE 5 CURVATURE AND DISTANCE MEASURES

until the boundary of the region extends into the flat segments

on either side of the sloping section. Pj and P, are the boundary

points when the correlation coefficient (using a straight-line
fit to the sloping region) falls to 0.98. The distance between
P, and P, is recorded as the perimeter length over which the
fingertip can be approximated well with a circular arc.

In summary, hand geometry is expressed as a set of 29 features that
are measured by locating precisely five landmarks on the perimeter of the
hand-~the tips of the fingers and the thumb. The feature set contains
16 measures of lengths and widths and ratios of lengths and widths, and
three measures of area or area and perimeter length. Ten measures of

shape (curvature) are included.

12

,} . -—,‘ L] b R . t- ,---T_.. -

Sniocoidinths . i,

V CLASSIFICATION RESULTS

Thirty subjects (15 male, 15 female) were selected randomly from

the subject population and 278 images taken from the selected subjects
were digitized. The data were converted to perimeter lists and sets of

29 features were extracted. The data were submitted to a standard sta-

tistical analysis program* to determine the power of the extracted ?
features in discriminating among the 30 subjects. Linear discriminant f
analysis was performed and all 278 feature sets were correctly classi-

fied for all subjects. The detailed results of this analysis, as well

as the feature data set, are submitted as a separate package. Annotation

for this package is included as Appendix C.

Of critical importance are indicators of value and reliability of
the various features selected. One such indicator is the univariate
F-ratio, a number that expresses the ratio of between-groups variation ;
of a given measure and the within-groups variation of that same measure.
Large values of F indicate that a measure will be relatively useful in
separating groups (or samples from different subjects) and small values
predict that a measure will do poorly. Figure 6 summarizes the F-ratios

of the selected 29 features over the 30-subject, 278-sample data base.

All of the features appear to be useful and reliable, especially
the more global measures of hand width, perimeter, and area. Some mea-
sures, notably the curvature and distance measures associated with the
thumb are marginal as presently calculated. They could be made more
useful by improving the algorithm that deals with the curvature of the
perimeter in the vicinity of the thumb and by locating the thumb tip

more precisely.

*
Statistical Package for the Social Sciences (SPSS), Version 7.0.

13

WILKS LAMBDA (U=STATISTIC) AND UNIVARIATE F-RATID

VARIABLE WILKS LAMBDA F

FEATUROL .0832 94,2725
FEATURO2 1984 36.5555
FEATURO3 20326 253.7253
FEATURO% L0611 199,.7288
FEATURDS 1254 590.6265
FEATUROS .0889 8746057
FEATUROT 08364 88.1511
FEATUROS <0497 16344109
FEATURO9 .039¢6 207.2642
FEATURTD «3463 16.1010
FEATURLL «1150 65.8000
FEATUR12 .,2728_ 22.8001
FEATURI3 <0961 80.4311
FEATUR1G 20704 113.0063
FEATUR1S #3051 __19.4798
FEATURT® .0282 295.1276
FEATURL? <0185 453,6141
FEATUR1B »0152 __ 554.9787
FEATURILS T T.0459 181.5804
FEATUR20 4010 12.7763
FEATUR21 01229 61,0282
FEATURZ?Z <1865 37.3090
FEATUR23 02264 29.2203
FEATUR24 1555 ©6.4599
FEATUR2S - 01329 TTTT 55,9899
FEATUR26 &7 9.3499
FEATUR2? 02048 33.1988
FEATUR28 L1087 7 TTT3.8%1e2
FEATUR29 «5389 7.3202

FIGURE 6 ANALYSIS OF HAND GEOMETRY FEATURES

14

s

S Ao S . B s e ey

Y G

In general, it appears that the measures used are being generated

very reliably, which results in good (high) F~ratios. One difficulty

Bt B 2
RFS-ne

in previous systems that used hand geometry for authentication was un-
reliable measures of certain features, with correspondingly small

F-ratios and poor discriminating power.

VORI SO WIS

Figure 7 gives more information about the quality of the feature

. t-v

set. In this table, the within-groups correlation matrix is listed.

The correlation matrix is used to express the degree to which pairs of

features are correlated or dependent. Circled are the two largest mag-

nitudes of correlation values, corresponding to the pairs

¢ Second finger length and the ratio of its length and width
¢ Thumb width and the ratio of its length and width.

It is to be expected that ratios of features and the features themselves
will tend to have relatively large correlation magnitudes, and the data
in Figure 7 substantiate this expectation. However, the SPSS results

show that all features contribute positively in the discriminant analysis.

In summary, we have Been able to improve on previous attempts to use
features of the hand for access control in the areas of accuracy and user
comfort. This has primarily been the result of removing the requirements
on both the subject and the mechanical device that produced either a
distortion of the data or discomfort for the individual. Instead, we
have required the software to do all the registration and measurements.
The result is a fast and reliable method that demands only a minimum of

effort from the individual requesting access.

If this technique were to be packaged into a commercial product,

we estimate that the throughput rate could be less than two seconds. 3

The rate-limiting step in the process is data acquisition from the
scanner through an interface and into a computer. The throughput rate
of a practical interface could be in excess of 275K bytes per second.
Because each image contains 256K bytes, the transfer would take about
one second. This data rate is well within the state of the art of

image production using a scanning linear-array system. Because the data

can be analyzed a line at a time, and therefore analyzed as it is

C e e e mime e = - . e e e ma= g A & R L TP
. 4 A * Sy L e R p("‘"'.,

TSI WATURGTT CktaTuRez T

SEATUROL

FLATUROD FEATUROY FEATUROD

PeiTumol
ATURGS
TUROS

1.00000
J72793

‘sgatuacs
sEATUROS

1.00000

FRATURO?Y
)
PEATUROY
slatuRi0

Pearurl)
Flatunil
sEatuRld

FEATURLS
sratumie

Féatuely
FEaTURLS

FRaTLRLS 17330 27779
FEITALE

FEaTUR2)
FEATUR2D

‘Bearuad
FEATUR2Y

sEATUR2S
TEATIMTS

FEATIR2Y
FEaTLRZD =.0209) =,0009

3
TFEATUNZY =:)298Y “B4580

FEATURID FEATURLY

+93203 «87430
FeaTURI2 FEATURLD BEATURLG

fEaTuRl0 1.00000

sEatURIL -a 00032 1,00000
‘FEaTURL2 S.0%044 .
FEatuall - 19190

-
L

1.00000 ~ T
Xilled
+«10981

ETUR
sEATURR2
Featun2y
FEATURRS —
PEaTUA2S

.
__ =eloz0}

)
sEaTURZO

-
FEaTUR2O

=0}
featun?) satmee fiartwel

23
fEATARLY s n -« 09874

FEATUR2S FEATUR2O

FiATuReT FEaATOROe Paatuiod
20000
«30320 .
«37190 « 42343 1,00000
oasire «100¢¢ o 21838

=.30%14 <. 13718 10117

3072
reatumyy

31032 ~e 20966 ~s10110
= 82930 ~s32000
-. -
=ojl?7e ~s11071

»2239¢ 27807

00164 Ut

«49300 +9332¢
*. 47003 ~. 42000

T -8

«191% 31321)

303 03380 _

1028 2e008

« 20097 «2738)

200031 24048

.

«95312 «13300

307
Y =Ny MNY
rEATURLS

fEaTURLY sEatuale

SRATVAZG

1.00000
30204
3434

_ed2080

4084
« 00809

=e12002 .
Featur2e PraTUR2?

seatvazy
. R
Aty 1.ovece
” 00000
- lense—he —ihes
v+ pretety TN

PEATURZS + 00080
Aan—LIN—Twee

16

FIGURE 7 ANALYSIS OF HAND GEOMETRY FEATURES USING WITHIN-GROUPS CORRELATION MATRIX

ey v

produced, we do not believe that the data processing would be limiting.
However, if line processing takes longer than scanning, multiple proces-
sors could be used with parallel multiple lines of processing working
concurrently to process more than one line at a time. The need for
multiple processing has not been assessed, since all work has been per-
formed on a multi-user system with relatively slow development-type pro-
grams. However, because our software could be supported by multiple

processors working in parallel, process time should not be rate-limiting.

Since the potential of this technique has been shown to be good,
the next task is to refine the technique. Refinements can be made in
all areas, including fine-tuning feature extraction, adding new features
and removing the less significant ones, and developing methods for making
authentication decisions based on these data. In addition, studies
could be made of methods for optimizing the software for minimum through-

put time.

VI COMPUTER PROGRAM SUMMARIES

The task of image analysis has been broken down into four discrete
jobs:

Determine the correct gray level for image thresholding using
the FORTRAN program HIST.

Threshold the image to produce a binary image using the FORTRAN
program THRESH.

paRT =

Extract a list of hand-perimeter points from the binary image
using the PASCAL program LINEBYLINE.

Extract the feature values from the perimeter list using the
FORTRAN program SCAN.

Each of these jobs is handled by a single independent program. A brief
description of each program follows, and listings of each program appear
in Appendix A. The program LINEBYLINE is quite complex, however, and
Appendix B is included to describe its operation in detail.

e, i Wl e A Y

A. HIST

This FORTRAN program computes a histogram of the frequency of occur-
rence of gray levels in an 8-bit gray-scale image. The program is capable
of handling a 512 x 512 pixel image, which is the size used to represent
the hand data. The image format is two pixels per 16-bit word. The record
size on a DEC RK 05 disk is 256 16~bit words. The output file lists the
frequency count of each gray level (0-255). A plot of the output can also
be produced on a TEKTRONIX 4000-series terminal, using the PLOT 10

o h

(TEKTRONIX) software interface installed in the Bioengineering Research -
Center's PDP 11/40 computer. The output of this program clearly ‘identi-

fies the sets of gray levels that represent either the background or

the hand; this information is used to pick a discrete gray level between

. the two sets of levels that will best separate them.‘ This level is used

by THRESH to produce a binary image.

19 M“mnm

’é\

B. THRESH

This FORTRAN program thresholds an 8-bit gray-level image to produce
a binary image. Thresholding is performed on a pixel-by-pixel basis.
The input file contains two 8-bit pixels per word with a total image size
of 262,144 pixels. The output file contains 16 one-bit pixels per word.
Both input and output files have 256 words per record. The discrete

threshold value is entered at run time.

C. LINEBYLINE

This PASCAL program produces a list of perimeter points that bound
"blobs" of color opposite to that of the background in a binary image.
Eight-point connectivity is checked for each point in the image. Using
the large area as a criterion, the hand blob is selected from others,
and only the hand perimeter is saved. This list of hand-perimeter points
is output as a file of ordered points running around the perimeter of the
hand. Only one pass is made through the image, and only one line is
accessed at a time. The program therefore requires only slightly more
dynamic memory than is required to store perimeter points. A more exten-

sive description of this program is included as Appendix B.

D. SCAN

This FORTRAN program processes the list of perimeter points produced
by LINEBYLINE and outputs numeric values that describe geometric features
of the hand, as discussed earlier in this report. Included below are
comments intended to help the reader interpret the program listing in
Appendix A.

¢ The preferential landmarks on a perimeter are the fingertips.

These are located by the angle algorithm on page A-20,
starting with the comment lines. Landmarks are found by
moving a window of size IDIS (18 points) along the perimeter

and looking for an angle criterion shift of 90° in the tangent
to the perimeter.

e Starting at line 174 on page A-5, calculations of finger length
are made. These require the precise tip locations calculated
earlier on page A-4, starting with the comment lines in the
middle of the page.

TS T TR LSy
I

PR

Finger widths are calculated with the code on page A-21.

Ratios of finger lengths to widths are calculated on page A-22.

Curvature measures are calculated with the code in the middle
of page A-22, using subroutines TANAG and LINFIT that process
angle~function data.

Hand width, perimeter, and hand area are calculated at the bottom
of page A-22, using the functions IDELTS and DSTNCE and the sub-
routine ARPRIM.

=]
red

Appendix A

COMPUTER PROGRAM LISTINGS

T SR ety YAt SRR WP o TE

PROGRAM HIST

Cc
c
C
g
g HANDLES IMAGES THAT ARE 256
C
Cc
c
C
c

LOGICAL®: NULL, NAMIN(38), NANOUT(38), A(512), ITITLE(72) ;
1
i

WRITTEN BY GREG MYERS L

THIS ROUTINE COMPUTES A HISTOGRAM OF AN 8-BIT GREY-LEVEL IMAGE. IT 'i
, Si2, OR w24 POINTS/LINE. THE IMAGE PORMAT IS !

HE RECORDSIZE ON DISK IS 256 16-BIT WORDS. f

THE OUTPUT FILE LISTS THE FREQUENCY COUNT OF EACH GREY LEVEL (9-2SS).

NOTE: POR 256 X 256 FILES, THERE IS ONLY ONE PIXEL PER WORD! P

&E“'é‘é%gs!“‘ﬁ?‘z‘%a) mhxlsus) YAX1S(2), TITLE(18)
N {
INTEGEN STARTL, STARTP, ENDL, ENDP
EQUIVALENCE (IITLE, TITLE)
DATA XAXIS¢1)/'GREY'/, XAX1S(2)/* LEV'/ XAXIS(3)/'EL ‘7,
v YAXIS(1)/'COUN'Z YAIS(D /T 7

an

g“"@ N‘I'A FROM rmxw.

WRITE (S, IO)
10 FORMAT(* FOR ¢ lNPUT’FlLE :YPB WLINES, INTS/LINE. AND FILENANE')

NP, . AMINC]) , - 1, NCHIN
15 mnunzls.o.aalu

OPEN (UNIT>LUNIN,NANE=NANIN, TYPE="OLD" , ACCESS='DIRECT ' ,READONLY,
RECORDS {ZE+ 128, ERR=90 1)

a0

WRITE (5,20)
FORMAT (* FOR HISTOGRAM AREA: TYPE STARTING LINE, STARTING POINT, &
1LINES, #POINTS/LINE®)
READ (5,25) STARTL, STARTP, ML, WP
25 FORMT(“ S
ENDL = STARTL « ML - 1
ENDP « STARTP + WP - 1)

o]
¢
WRITE (S 30) .
30 FORNAT ¢ TYPE “l" IF \'OU WANT A BISTm OUTPUT FILE ONLY,'/
1 *'2'* IF YOU WANT A PLOT ONWNLY,'/
2 ' '*3'* IF YOU WANT BOTH')

READ (5,35) ISwp

JF (ISWP .EQ. | .OR. ISWP . 3) WRITE (S,40)
40 FORMAT (* TYPE HISTOGRANM OUTP I.E')
IF (lﬂ?ltfg 1 .OR. .EQ.
1 (5,45) uaiour.(nuwrm.l-x.umoun
45 FORMAT (Q,30A1)

NANOUT (NCHOUT+ 1) = uuu.

IF (ISWP .EQ. 2 .OR. .EQ. 3) WRITE(S,SO

FORMAT(* TYPE # OF GlEY LEVELS DESIRED IN "'HE PLOT (ID)*)
1F (l?"s;m. 2 .OR. ISWP .EQ. 3) READ(5,55) NGREYL

R

e

-==INITIALIZE HISTOGRAM ARRAY

Tll « SECNDS(0.)
DO 100 | « 1,256
(1) = @

AQACOAOOO

8
i o

anaan

c 3
¢ ,
C---POR 1024 POINTS/LINE (2 RECORDS PER LINE)

e R i o - e - --) -
S . N

S8

210 JNBC - (STARTL-1)eZel (ENDL-{)s2¢ 1.2
(Msl}%ﬁ) .l . b wiTE 5,212) Jkic

~N
-
N
g

{

stauth ot si2 00 10 220

(LUNIN m-sa:» (A(1),1e1,512)
AP
INOENDP,512)
ISTL(A K1 .K2, 1

ﬂz: -
EES
g

3
§

1
(ENDP_.LE. 512) GO TO 210

READ (LUNIN'JREC+) ,ERR=984) (A(]),1e1,512)
ll - IAXO(STAI‘" §i3 - s12

= ENDP - $12
CALL HISTL(A.K1,K2, 1D
CONT INUE

E
3

219
&
g-“m 512 POINTS/LINE (ONE LINE PER RECORD)

300 DO 310 JREC = STARTL,ENDL
IEAD l('l.lllllll Jn%m-sos) (A ,1=1,512)

3ie NT INUE
G0 TO 500
¢
g---m 256 POINTS/LINE (2 LINES/RECORD)

400 DO 410 JREC = STARTL,FNDL
READ (LUNlN‘JlEXT ERR=903) (A(1),11,512)

-conrgss‘llmlA ll‘l %nn A FROM DEANZA PORMAT
A1 A = A2ep))

CALL ms’ﬂ.u srmr ENDP, 1)
CONTIN

410
c
c
H
& --PRODUCE OUTPUT FILE IN A FORNAT ACCEPTABLE TO THE PROGRAN PLOTDATA
500 INVE
z SECNDS(TIN)
. WRITE (5,581) TINE
$01 FORMAT(''TINE = *,F10.3,' SECONIS')
CLOSE (UNITLUNIN}
58S | = |.2ss
Qe -1
B « 8D
cus CONTINVE
om«'%u"&m&rr nz nmwr'?ng NEV o 1AL
| 'e .' . ’
i * ,ERR=90S , CARR wbconnot.-'l.isr-»

VRITE (45100 (WANINUL) 1=1,27), STARTL,STARTP . ML,NP
$18 FORMAT (7K, 'HISTOGRAN OF ',2741,4is)
N256 - 2sé
VRITE (4,520) N256, (G(I) H(D),le1,256)
FORMAT (14,7, 2(E15.8,2%))

WRITE (4,540) THAREA
FORMAT(/,* HISTOGRAN AREA = ',17)
CLOSE (UNIT=LUNOUT)

“$8 8
=
=
o
*
=
=

Cc
C---PLOT THE DATA ON THE TEXTRONIX

sﬂ

CONTINVE
IF (ISwP .LT.
ENCODE

T0 999
(&7 sno ITITLE m-s» (NANINCD) ,1e1,27) ,STARTL,STARTP ML, NP

1
CALL PLOT (§,H,NGREYL,XAXIS, YAXIS,TITLE}

Qﬂﬂgﬂ

1 (NAMINCD), L=t
ST: ERROR OPEN1 NN FILE *,30A1)
2

29 4
gEegs
t 3= _.:'-’

282

:

i
IST El"?: # POINTS/LINE 256, S12, OR 1624 ONLY!*)

58

e fY

me =
ma"

§s-

-l
ot
L]
g

4

[~

gg
-~
=
=W

i
IST ENROR: ERROR 983 READING INPUT FILE*)

8

3

8
:

Ak b

e s ————————————--

914 e : ERROR 964 READING INPUT PILE')
(UNIT-LUNIN)
10 999
98S WRITE (5,91S) (N m 1=, NCHOUT)
91S FORMAT(® 'HIST : m‘.aoumrr FILE *,30AD
G0 10 999
9 WRITE (5,916) CITITLE(1),1e1,72)
916 FORMAT(72A1)
PAUSE 916
c G0 10 999
END
c SUBROUTINE RISTL(A,K1,K2, IR}
¢
lm ®1 A(S512)
o4 1H(256)
c
¢
DO 100 1'- X1, xz b
It e @ INT e Nt o 256
INDX = INT + 1
iIF (IHCINDX) .EQ. 32767) GO TO 100
IHCINDX) « IHCINDX) o 1
100
c
¢
999 RETURN
END
C
¢
c PROGRAN THRESH
c
g WRITTEN BY GREQ NYERS
c
¢ Tgtmaoun AN 8-BIT GREY-LEVEL INAGE AND PRODUCES A BINARY
€ (1 BJT PER PIXPL) OUTPUT IMAGE. THE INPUT FILE CONTAINS 1 8-BIT PIXEL
c RD_IF THE' INAE S IN THE 256 X ANZA FORMAT. OTHERVIZE,
C THE IMAGE CONTAINS 2 PIXELS PER WORD. PUT FILE CONTAINS
C 16 1-BIT PIXELS PER WORD. DOTH THE INPUT AND OUTPUT FILES HAVE
¢ ECORD.,
g
c NODIFIED 9/24/80 TO ACCEPT COMMAND STRING INPUT
€ COWMAND SYRTAX IS:
¢ [OUTFIL) s INFIL/LN: #: #/TH: #
¢ ROB RANMON

[elsielelelrlelvielplole]

LOGICAL® | rllgl.vlﬁmn.nmxuu) A(8192) ,B(512)

INTEGER IFLG KL NP NP, ITHR , EXSTAT
INTEGER SWTAB(9) ,TRVAL ($) ,LNVAL(S)
REAL PROMPT

DATA PRONPT/'THR'/, IEXT/3REXT/,EXSTAT/1/
DATA Nl./-l/ NP/— \/,ITHR/-1/
LENCE' (BYTE, IBYTE)

I}R'll"k LUNIN/3/, LUNOUT/ 4/

~--GET DATA FRON TERNINAL

WRITE (5, 10)
FORMAT (* 'FOR INPUT FILE: TYPE SLINES, romsxum-:. AND FILENANE®)
READ (S, 15) NL. NP, NCHIN, (NANINCI},1s1,NCHIN)
FORNAT (215,0,3041)
NANIN(NCHIN«1) = NULL

itialize CETCHD and “itol\ descripter taables
CALL ASSIGN (6,°TL:’,3) tAsgiga L for GETCHND
CALL INICHD 6, 1EXT , PRONPT) Sel LIIN and file oxt,pr t
CALL CSISV (SVIAB(1}, 'uc-.z..uwu '\Declare /LN svite
CALL CSISV (SNTAB(S), "l’ll' 1,,THVAL) tDeclare /TH switoh
CALL CSISV (LNVAL(1),'D NI.) tDeclure first val for /LN:#
CALL CSISV (LNVAL(3),'D ‘.NP) 1Second velwe
CALL CSISV (THVAL(1),°'D',ITHR) {Declare val for /TH:#

A-4

[
C Get ooand :lriu and proon: it

18 ‘8"
IF (LFLG N8} "80 10 1000 'Error
EXSTAT » tSel swcoessful
CALL (SII(B...IHB) 1Compress string
IF(IFLG .GT. 8) GO TO 1020 tError
IFUFLG .EQ. 6) LFLG » '1" tEqual sign in string
IFUIFLG .LT. ©) LFLG = '0’ tNo equal sign
CALL GIDE"(LFI.D....‘IIS] 'Set defanlt ext
NL ¢ -} 1Set for oheck
NP & -1
- =]
CaALl, cst2nG, NWIL. SVTAB) tParse string
IFCNANFIL (D) . 1'60 T0 1040 ‘Error
IFHNL BQ. -l) OR (NP m ~1)) GO TO 1030 1!Brror
FUITHR .EQ.) GO TO 1930 tError
WEN(I)NI'I'-LUNIN NAME=NANFIL,TYPE«'OLD"® Am-'blm'.lmLY,
c ! RECORDS{ZE« 128, ERR«90 1)
c
TOTPIX = FLOAT(NL) ® NP
NRECIN = TOTPIX / S12
NBLOUT = TOTPIX / 4096
LINC = l
KTOT «
lF(NL EZSGMNT.NE.ZSG) GO T0 18
NRECIN = NRECIN * 2
LINC = 2 '
KTOT « i6

18 CONTINUE

[

C Get iaformation ud open output file
1F (LFLG ‘1') GO TO SO 'Equel sign ie string
NANFIL(2S) = 'B° 1Set default exteasion
NANFIL(26) = '}°
&A)IFIL(Z‘?) « 'N°

10 60

se CALL CS nsrvo'...mlm.us) 'BIN®) 1Set defasit oxt
CALL CSI120°0' ,NANFIL) Parse string

IF(NANFIL(1) .EQ. @) GO TO 1048

c WRITE (5,20)

C 20 FORMAT (' ‘TYPE THRESHOLD, AND NANE FOR BINARY ou-mrr FILE")

¢ READ (5,25) [THR,NCHOUT, (NANOUT (1), L« |, NCHOUT

C 2§ mmunu Q,30A1)

¢ NANOUT (NCHOUT+ 1) = NULL

60 OPEN (UN1T=LUNOUT ,NAME=NANF L, TYPE= *NEV* , ACCESS« *DIRECT®,

¢ ! RECORDS 1ZE~ 128, ERR+902, INT I ALSIZE=NBLOUT)

¢

¢

¢

TIR = SECNDS(@
noneo:-nunacmno'r

C
g—--lﬂb IN 4096 8-BIT PIXELS
DO 200 Kx- 1,KTOT

OFF = (X-1)%5)2
READ (LUNIN'JeK-1) (A(KOFF+1),1e1,512)
c200 CONT INUE
[
Do 3“-! ll. 1,512
c IBYTE = @
g PERFORM THE THRESHOLD IN GROUPS OF 8 PIXELS
DO 490 | = 1.8
INT = A(LOFF)
LOFF « LOFF + LINC
IP (INT LT,) INT = INT +» 256
nbyto . uhﬂhbyto.-l)
if Giat .ge. ithr) ibyte = ior(ibyte,I28)
409 contlis n
b(l) = byte
continwe

o--~write oul one record of data (4096 binary pixels)

°
write (luwnowt'j/ktotel) (b(i),is1,512)
100 eostlinve :

CLOSE (UNIT « LUNIN)
CLOSE)

A-5

999 G0 TO 1@ 1Get next command

e

3

°

901 write (5,911) (NANFIL(i),i=1,34

911 format(* error openming lapwt hlo *,30s1)
so to 999

902 write (5,912) (NANFIL({),i=1,34)

912 for:ntl error oreating oulpﬂ file ',30s1)
go to

c

1000 IF(LFLG .EQ. "366) CALL EXST(EXSTAT) tEzit with gtatos

1820 TYPE 1021

1821 FORMAT (* ®8¢ command syatax error ®90')
a0 TO 9600

1830 TYPE 163}

183} FORMAT (° 8%® opror in input filespec ®99°)
G0 TO 9000

1640 TYPE 10641

1841 FORMAT (° ®8¢ Error ia owtipst filespeo ®%¢')
GO TQ 9060

Cc

9000 EXSTAT = 4 1Set for sever error

- CALL RESCMD 1Reset omd input to top level
G0 TO t0 tGet next ocommend

°

e
ond

PROGRAN LINEBYLINE(TTY); (SNSP®)

(®* VERSION 46C 10/16/80

THIS VERSION PRODUCES A PERIMETER LIST OF ONE LARGE BLOB, VBICH IS SUPPOSED
TO BE A HAND. FOR ROB HAMMON AND THE PALNPRINT STUDY.

WRITTEN BY GREG M
SRT_INTERRATIONAL, J-3066
333 RAVENSWOOD AVENUE
MENLO PARK, CA. 94825

ﬂ“S ALGORITHN IS TAXEN FROM A REPORT BY GERRY AGIN AT SRI ENTITLED

IMAGE PROCESSING ALGORITHMS FOR INDUSTI(IAL VISION". THIS ALGORITHN
IS REFERRED TO AS "CONNECTIVITY ANALYSiIS". IT Sﬂ?lBITS lINAlY
INAGE INTO "BLOBS" (CONNECTED AREAS) OF THE SAME “COLOR® EY LEVEL).
AND ONLY ONE LINE 1S ACCESSED
AT A TINE (HENCE, THE PROGRAM NAME 'LlNé—BY'LINE’). FEATURES OF EACH

ED, SUCH AS ITS AREA, CENTER OF GRAVITY, BOUNDING RECTANGLE,

AND A LIST OF ITS PERINETER POINTS.

E LETTERS 'NSP’ WITHIN A OOMNENT NEAN 'NON-STANDARD PASCAL°.
‘I'IIE LINES MARKED °'NSP’ IAY REQUIRE MODIFICATION.

THE LETTERS 'MD’ WITHIN A COMMENT MEAN 'MACHINE-DEPENDENT'.
THESE LINES NAY ALSO REQUIRE MODIFICATION.

BECAUSE THE COMMAND °DISPOSE’ IS NOT IN THE “SWEDISH* VERSION OF PA&ZAL
:;ESllll '%SPOSE STATEMENTS ARE ENCI.OSED N COMMENT STATEMENTS AND

READ AND MRITE STATENENTS FRON THE USER’S TERNINAL DO NOT REQUIRE
i&ﬁl‘gﬂcmc‘nm IN THIS VERSION OF PASCAL. THE FILE 'TTY' IS

EOLN IS AT THE BEGINNING OF AN INPUT LINE WHEN READING FROM THE TTY.

®

CONST :ﬂng.smsu.zl’us . 512; (* THIS PROGRAM HANDLES 512 X 512 INAGES ONLY ®)
NBITSPERCHAR = 8; (oND*)
NCUARSPERLINE = 64; (® = NPIXELSPERLINE / NBITSPERCHAR ®) (*ND®)
NCHARPERBLOCK = S12; (oND®)

BKGND = O; INK = l'
(® INPUT COMMANDS ®)
OFF s 'F';

ON
Ll
Li i
LISTPERINS = 'P';
LI
Ll
D1
ST

4445,
"‘5—-‘

UNLENGTHS = 'R’ :

T4
5
:
i

TYPE BINARY « BKGND..INK;
OMDTYPE = SET OF ‘A}..'2';
ARRAYSINT = ARRAY[1..S5) OF INTEGER;

BLOBPTR = tBLOBS;
PTRPERINSECTION = tPERINSECTION;
PERINPTR =« ¢PERIN;

BLOBS = RECORD
COLOI BINARY.
INT

PoREN: PYRPERINSECTION;
NPERINPTS: INTBGER

AREA, xnun. EAN: REAL:
XMIN, XMAX, YMIN, YMAX: INTNEI;
PARENT, NEXT: BLOBPT| END;

PERIMSECTION = RECORD

LEFT ,RIGHT: PERINPT

PREV, m.xt nnrsxlnsécnon END;
PERIN = RECORD

LINE,COL: INTEGER
NEXT: PERINPTR END;

satmnsmnm

= RECORD
RTG‘)L ENDCOL INTEGER;
BLOB
NEXT: SEGP END;

PTRRUNLENGTH = tRUNLENGTHS:
RUNLENGTHS = RECORD
NTEGER ;

STARTCOL,ENDCOL: 1
NEXT: PTARUNLENGTH END;

(® GLOBAL VARJABLES *)

VAR BLOB,BLOBSDONE: BLOBPTR;
ECYCLEDPTR: PERINPTR;
ARRAYP ARRAY{1..11] OF PERINPTR:
ACT IVELINE, PREVSEG, CURRSEG, SEG: R;
NEVL INE, NEVSEG, LASTNEWSEG: ' PTRRUNLENGTH;;
CND, ONOFF CHAR;
CMDSET: CMDTYP

o H
INTERACTIVE:

PA
LINENUM,COL NEH(‘OIPNIII NLREAD,NT INES:

TRACEBLOBS, i‘lACEPI:RIlS,TlACEA(':I‘IVELINI—SN!LNT$ TRACFRUNLENGTHS: CHAR;

TRACEDIAGNOSTICS: CHAR
INPUTIIAGE DATAFILE, PB*IIFILB TEXT;

INPUTNANE , DATANAME , PERINNANE: ARRAY[1..30) OF CHAR;
BIT: ARRAY(1..NPIXELSPERLINE] OF BINARY;

I, CHARTOT ,LINEGROUP : INTEGER ;

TYPELINENUMS: BOOLEAN;

IIANDONLY BLOBERITTEN BOOLEAN; AREATH: REAL;
TRACEPARENT , RECURS: BOOLEAN:

NSK1IP: IN'I'I'-JGER

(o9P+ NEW PAGE *)
PROCEDURE PAUSE;

VAR DUMNYCHAR: CHAR;
BEGIN
“ITB)H'TYPE ANY CRARACTER TO CONTINUE');

READ ommam
END; (® PAUSE *)

PROCEDURE TYPERUNLENGTHS;
:A 1 PTRRUNLENGTH;
END;: (® TYPERUNLENGTHS ®)

PROCEDURE TYPEACT | VEL INESEGMENTS ;
;glﬁlsr‘n: SEGPTR;
END; (® TYPEACTIVELINESEGMENTS ®)

IAREATH: INTEGER;

(*ND*)

(o8P
leUlE Uhl‘l’ﬂllﬂﬂ('ﬂ DEVICE: TEXT; VAR BLOB: BLOBPTR):

BFGIN
END; (® WRITEBLOB *)

PROCEDURE TYPEBLOBS(VAR DEVICE:TEXT);
VAR ALSPTR: SEGPIR;

BEGIN
END; (¢ TYPEBLOBS ¢)
(9P PAGE ®
PIOCI-:I)UIE DlRPOIN‘I‘(VAl DIR,X1,Y1,X2,Y2;: INTEGER);
(L DIRECT IONS :
X
-1 @ 1
-1 3 2 1
Y 06 4 . 0
1 s 6 7)
BEGIN
CASE DIR OF
3,2,1: Y2 := Yi-1;
4,0 : Y2 := YI;
5,6,7: Y2 := Y]] END;
CASE DIR OF
3,4,5: X2 := X1-1;
2,6 : X2 := XI1;
8,1,7: X2 :e Xiv+| END;
END; (% DIRPOINT o)

PROCEDURE UNPACKS(VAR XX: INTEGER; VAR DIR: ARRAYSINT);
;ésl‘.K.XDIVM.XDIVSIZ.XDIV“.XDIVO: INTEGER ;

XDIV496 ' := X DIV 4096;
KDIVS12 :» X DIV S512;

DIVe4” i« X DIV 64

XDIV8 := X DIV

DIRIL) := X - xnivsoe
DJRI2) := XDIVE - XDIV64e8;
DIR(3] :« XDIVE4 - KDIVS12%8;
DIR(4] := XDIVSIZ - XDIV4096e8;
DIRIS) DIV4G96;

END; (¢ UNPACKS *)

(%8P+ NEV PAGE ¢
PROCEDURE UNPACKPEJHIS(VM PTR,UPPTRR,UPPTRL: PERINPTIR);

VAR DIR: ARRAYSINT;
. 11: INTEGER;

BEGIN
ARRAYP{112.LINE :» PTRY.LINE;
ARRAYP[1)1.COL :s PTRt.COL - NPIXELSPERLINE;
UNPACKS (PTRt . NEXT+ . LINE,DIR) ;
md et 10 S Do BEGIN
%l‘;iom'{:miclzinnmm.col..nmvrm:.une.nuvrum.m.mmxm.wm;
UNPACKS(PTRY NEXTs COL,D
IF TRACEDIAGNOSTICS = 6n mt‘:u FOR 1 :« 1 T0 5 DO WRITELN(DIRII):4);
md e 8 10,10 DO BEGIN
iy * H
DIRPOINT(DIR{1-51 ,ARRAYP{ 119 .COL,ARRAYP(1)¢ LINE, ARRAYP(11]¢,COL,ARRAYP(11]¢.LINE) ;
END; (% FOR ®)

it

UPPTHR := ARRAYP(1];
UPPTRL := ARRAYPII1);

END; (* UNPACKPERINS *)
(‘.?0

PAGE ®
FUNCT ION comar:r-(vn POINT!,POINT2: PERINPTR): BOOLEAN;

BEGIN
IF (ABS(POINT1+.LINE-POINT2¢.LINE) <= 1) AND
(ABS(POINT1¢.COL -POINT2¢.COL) <= 1) THEN CONNECTED :+ TRUE
G)NNBL'TED e H

PROCEDURE “lTEOlNTS(VAR DBVICB TEXT;
RIGHT ,LEFT: PERINPTR;
VAI NPERINPTS: INTEGER) ;

VAR PTR,PTR2,UPPTRR,UPPTRL: PERINPTR:
BEGIN

(* IF \TRACEDIAGNOSTICS « om AND RECURS THEN BEGIN
VRITELN ('RECURS=TRUE ')
PTR2 := RIGHT;
WHILE PTR2 <> LEFT DO BEGIN
WRITELN(PTRZY LINE:4, CIR2¢ .coL: “;
PTR2 := PTR2¢.NEXT; = END;
VRITELN (PTR2Y .LINE:4.PTR2t .O0L:4); END; ®
PIR :» RIGHT;
NPERINPTS := NPERIMPTS + g
ViTH PTRY DO WRITELH(D CE,LINE:4,’ *,C0L:4);
WHILE PTR <> LEFT DO m
'E PeRY NEXT) COL IXELSPERLINE THEN BEG
TF RECURS THEN BEGIN WRITELN (XD nacunsmn); PAUSE END;
UNPACKPER INS (PTRt ,NEXT , UPPTRR , UPPT|
(¢ IF TRACEDIAGNOSTICS = ON THEN *VRITELN{'WRITEPOINTS —- A");
IF TRACEDIAGNOSTICS = ON THEN
RECURS := TRUE; ®)
(PTR2 :» UPPTRR;
VHILE PTR2 <> UPPTRL DO BEGIN
WRITELN(DEVICE PTR2 .LINE:4,PTR2¢ .COL: #) ;
PTRZ := PTR2Y.NEXT END;
WRITELN (DEV ICE.PTR2? . LINE: 4, PTR2Y .COL: 4) ;)
WRITEPOINTS{DEV ICE, UPPTRR., UPPTRL NPER inPTS)
(o 1P TRACED IAGNOST 165 o ON THEN WRITELN (" URITEPOINTS -~ B');
IE TRACEDIAGNOST IS = ON THEN RECURS' s« FALSE; &)
PTR := PTR!.NEXTt .NEXT; END

ELSE _BEGIN
(¢ IF NOT_CONNECTED(PTR,PTRt .NEXT) THEN BEGIN

WRITELNC' POINTS NOT CONNECTED®) ;

WRITELN (DEVICE, 'POINTS NOT CONNECTED'); PAUSE; END; ®)

(® SKIP UNNECESSARY PERIMETER POINTS ¢)
IF (PTRt .NEXT (> LEFT) AND CONNECTED(PTR."R'.NEXT'.NEXT)
THEN PTR :» PTR'. NEXT;
PTR := PTRY.NEXT
NPERINPTS := NPFR IPTS 0 1;
(* IF TRACEDIAGNOSTICS = ON T
VITH PTRt DO URITELN(LINE 4, ', COL:4); *)

VIT!I PTRt DO HRITELN(DEVICE LINE:4,' ',C0L:4);
EN| (® ELSE ®
END; _(® UIIILE *)

END; (* WRITEPOINTS ¢)

(98P+ NEW PAGE *
PROCEDURE UIITEPERIIS(VM DEVICE: TEXT; VAR BLOB: BLOBPTR};

VAR PSPTR: PTRPERINSECTION;

IN

HITII l ¢ DO

PERI! > Nll. THEN BEGIN
NPERINPTS :

= 9;
IF NoT HANDONLY THEN WRITELN(DEVICE,®
F_NOT HANDONLY THEN mm.mnmca.'nwi CONPONENY # °,CONP:4);
PEPTR « PERIN;
REPEAT
IF NOT HANDONLY THEN WRITELN(DEVICE,' ');
IF_NOT HANDONLY THEN VRITELN (DEVICE 'LINE
VITH PSPTR) DO WRITEPOINTS (DEVICE, RIGHT,LEFT, m:immsv
PSPTR := PSPTR .NEXT
UNT {1 rsrrn « PERIN;

END
END; [T HRI'I'BPERIIS ®)

PROCEDURE TYPEPERINS(VAR DEVICE:TEXT);
VAR ALSPTR: SEGPTR:
BEGIN

WRITELN(DEVICE,' ');
uunmlmmcs.'nwi PERIMETERS') ;
ALSPTR ;< ACTIVELIN
WHILE ALSPTR <> rm. ﬂo BEGIN
vnnsrmnsmsv ICE, ALSPTR? . BLOB) ;
ALSPTR := ALSPTRY.NEXT END;
END; (% TYPEPERINS ®)

A-9

R o

(o8P+ NEW PAGE ®
PROCEDURE NMWAI NEVPOINTER: PERINPTR); (ONSP*)

(* TAIS ROUTINE IS NEEDED ONLY IF THE COMMAND 'DISPOSE' IS NOT AVAILABLE
IN THIS VEISIGI OF PASCAL *)

nm.mrn <> NIL THEN BEGIN
NEWPOINTER :
necvcn.mn « RECYCLEDPTRY . NEXT;
NEWPOINTENY . NEXT ;= NIL END.
ELSE NEV(NEWPOINTER) ;
END: (* NEW ®)

PROCEDURE DELETEPERINS(VAR RIGHT ,LEFT: PERINPTR!;
VAR POINT: PERUITTR;
BEGTY

I‘ADD'I’IILLISI'WPEIlm-POI OF THE BLOB TO THE LIST OF
RECYCLED PERINETER POINTS. THIS SECTION OF COVE SHOULD
g gﬁ&nul-l-‘.‘!‘llﬁ COMMAND 'DISPOSE' IS NOT INPLEMENTED IN THIS VERSION

LEFT+ .NEXT := RECYCLEDPTR;
RECYCLEDPTR :~ RIGHT;

(- msros: OF PERINETER POINTS AND PERINETER SECTION. THIS SECTION OF CODE
BE USED ONLY IF THE COMMAND °'DISPOSE' IS INPLEMENTED. ®)

(84 UI"LE ll(ll’l‘ <> LEFT DO BEGIN
POINT 1GHT;
RIGHT := RIGHT?.NEXT
DISPOSE (POINT)
DISPOSE (RIGHT))
END; (° DELETEPERINS)

(*9P+ NEW PAGE ®
FUNCT ION DIIII'I,‘IION(VAI X1,Y1,X2,Y2: INTEGER): INTEGER;

(e DIRECTIONS:

X
-1 0 1
-1 3 21
Yy 6 4 ., 0
1 s 6 7 e)
VAR DELTAY: INTEGER;
BEGIN
DELTAY :e¢ Y2 - YI;
CASE X2 - X| OF
-1: CASE DELTAY OF
-1: DIRECTION := 3;
©: DIRECTION := 4;
1: DIRECTION := S END:

2
1: DIRECTION := 6 END;

1: CASE DELTAY OF =
-I' DIRECTION :

[N I]
Y

N -

b irpe SASE, DELTAY ©)
BND; (° bl

(*9P+ NEV PAGE °

nocmn: MACI'POINTS(VAI PTR,PTRB: PERINPTR; VAR 1: INTEGER);
'PIEVI.INB +PREVCOL,POSITION,DIR: INTEGER;
wra m' DO _BEGIN

iF 1 = @ THEN BEGIN
PIRB! .LINE

BSE peoin
= 5, THDN POSITION := | ELSE POSITION 1= POSITION * 8
g‘n" i+ PTRB?.COL - POSITION ¢ DIRECTION (PREVOOL, PREVLINE,COL,LINE) ;
PREVLINE := LINE;
nzvcoz. <“coL;
Bo; 10
BO: (o COLPALTPOINTS ®)

[0t 8 PAGE ¢
rm PU-IS(VAI PERIN: PTRPERINSECTION) ;

VAR PTR,PTIRA.PTRB: PERINPIR:
FIRSTGROUPOF 10 :B(I)LBAN (* NOT USED RIGHT NOW ©)
NH-.IIIIP‘!S 1: INTEGER

BEGIN
ﬂ'l :; PERINt .RIGHT ;

FIRSTCROUPOF 10 :» TRUE;
IF PIR <> mm LEFT THEN
REPEAT

BEGIN
VF (PTRt_.LINE ¢ LINBWI-I) AND (PIRt.COL > ‘
D (PTRt.COL <« RPIXHSPERLINB) THEN BEGIN "
- 0 m BEGIN i

PT PTR.

NEWV (PTRB) :
tiwouncl'rromrsmn.rin D; {
IF1= 11 ﬁm: BEGIN

(® TO IDENTIFY THAT COMPACTED RECORDS FOLLOW &)
PTRAY .COL :s PTRA'.COL ¢ NPIXELSPERLINE;

(® [NSERT COIPM.‘I‘ED PEI“IE'I'H RECORD INTO THE LIST &)
PTRBt .NEXT := PTRt
Dﬂ.E\‘ﬂFRIIS(P‘I‘RM NBXT PTl)
PTRAS .NEXT := PTRB;
PTll :» PTRB;
i O
BJD; (& IF | =
(¢ IF 23 CDNDITIONS THEN ¢)
BSE IF 1 > © THEN BEGIN

;' ANo!NCOlPLETE CONPACTION OCCURED -- RESET VARIABLES ®)

FIRSI'GROUPOFJO := TRUE;
DELETEPERINS (PTRB,PTRB) END;
PIR := PTRt.NEXT
END ' (s REPEAT BEGIN)
UNTIL PIR - PERINY .LEFT
BND; (o PXPERINS o

PROCEDURE PACKPERINS;
:AllNPBRllPTS' INTEGER;

SBEG := ACTIVELINE
HHILE SBG <> lll. IX) BEGIN
VITH_SEG?.BLOBY DO
IF PERIN (> NIL THEN BEGIN
: PKPERINS(PERIN
; PERIN := PERII .NEXT END;
.NEXT END;

= SEGe 4
' END; (84 PAC\PEIIS *)

(*8P+ NEW PAGE ®)
FUNCTION ENDOFBLOCK : BOOLEAN;

N
m}l’ mnor NCHARPERBLOCK THEN BEGIN

1 @5
mnom,ocx := TRUE _END
ENDOFBLOCK :» FALSE

tm 1:
m(.!IlAﬂ“t.)T Cllm.;

PROCEBURE GETLINE;
(®* GET A LINE OF BINARY INAGE DATA FROW AN INPUT PILE, ©)

VAR (NPUTBYTE_EOBL '
" o Bires IPeiR, ;
peGIN’

(& READ IN ONE LINE OF DATA FROM THE INMUT FILE @)

(® UNPACK THE BINARY DATA: ITBlé L%l.!,m THAT THE DATA IS INTERPRETED AS

A SERIES OF 8-BIT CHARACT

INDX := O;
FOR | := | TO NCHARSPERLINE DO BEGIN
IF EN nonswcx THEN READ (INPUT §MAGE,EOBL) ; (*ND*)
IEADlINPUTllAGE INPUTBYTE) ;
BITS := ORD(INPUTBYTE);
FOR J :« | TO NBITSPERCHAR DO BEGIN
INDX := INDX » 1;
IF ODD(BITS) THEN BIT{INDX) := INK
ELSE BIT(INDX] :« BKGND;
BITS := BITS DIV 2;

END;
END; (% GETLINE ®)
PROCEDURE SETLINE;
(* SET UP STARTING RUNLENGTH RECORD)

BEGIN
1F LINENUN = | THEN BEGIN

NEW (NEWLINE) ;

NEWLINE® .NEXT := NIL END;
NEWLINEt .STARTCOL := MININT+1;
NEVLINEt .ENDOOL :e MAXINT-1;
NEWSEG := NEVLINE;

LASTNEWSEG := NEUL"‘E;
END; (¢ SETLINE ¢

PROCEDURE ADDRUNLENGTH (COLUMN: INTEGER);
;gl:ﬂm: PTRRUNLENGTH;
1F NEWSEG?.NEXT <> NIL

THEN NEWESTSEG := NEWSEGY.NEXT (® ADVANCE NEW SEGMENT POINTER IF
A SEGNENT ALREADY EXISTS *)

ELSE BEGIN
NEWNEUBI’SEG)- (®* CREATE A NEV SEGMENT IF IT DOESN'T EXIST ®)
NEWSEG? .NEXT :» NEVESTSEG; (& CONNECT NEWESY SEGMENT TO L(ST ¢)

NEVESTSEGY . NB\T :s NIL END;
NEWSEGt . ENDCOL_:= COLUMN - 1I;
NEWESTSEG* . STARTCOL := MIN'

NFUI‘JSTSEG' ENXOL ;= IAXINT
NEWSEG NEWESTSEG lli’DA‘I'E SEGMENT POINTER TO THE NEVEST SEGNENT ®)
END; ¢* ADDRUNLENGI‘H *)

PROCEDURE CREATERUNLENGTHS;

(* FOR EACH TRANSITION, CREATE A NEV RECORD FOR THE RUNLENGTH SEGMENT ®)
VAR 1: INTEGER:

BEG]

IF BIT{1] = INK THEN ADDRUNLEIGTB(I)'
FOR 1 :s 2 TO NPIXELSPERLINE

IF BIT(I~1]1 <> BIT(I] THEN ADDRIINLENG‘I‘H
IF BlTINPIKElSI’ERLINEI = INK THEN ADMUNLBNGTH(NPIXEISPMINB*U:

IF TRACERUNLENGTHS « ON THEN TYPERUNLENGTHS ;
END; (¢ CREAT-UNLENGTHS

(98P+ NEW PAGE ®
PROCEDURE ADDRIGHPERIIPOINT(VAR PERIN:PTRPERINSECTION; LINE,COL: INTEGER) ;

(* THIS PROCEDURE ADDS ONE POINT 10 THE PERINETER LIST. 'I'IIE NEW POINT IS
INSERTED BEFORE THE POINT DESIGNATED BY PERIMS.RIGHT

VAR NEWPOINTER: PERINPTR;

BEGIN
NEWW(NEWPOINTER) ; (ONSP*)
NEWPOINTER? .LINE :~ LINE.
NEWPOINTER? .COL :»
NEWPOINTER? .NEXT :e PFRII' RIGHT;
’Elll'.ll(lﬂ' :« NEWPOINT ‘
® ADDRIGHTPERINPOINT)

PROCEDURE ADDLEFTPERINPOINT (VAR PERIN:PTRPERINSECTION: LINE,COL:INTEGER);

(®* TRIS PROCEDURE ADDS ONE POINT TO THE PERINETER LIST. TIENEVPOINTIS
INSERTED AFTER THE POINT DESIONATED BY PERINt .LEFT

A-12

S T T T R T T

e i s 4 C

xglzmrolnn: PERINPTR;
NEWW (NEVPOINTER) ; (SNSPe)

NEWPOINTER? .LINE := LINE;

NEWPOINTERY .COL e ml.

NEWPOINTER? . NEXT IL

PERIN® .LEFTY. NEXT = NEVPOINTER; (’ commcr PIEVIOIJS POINT AND NEV POINT *)
PERIN® LEFT := NEWPOINTER ® RESET LEFT NTER *

END; «* ADDLEH‘I’ERIIPOINT b

(*8P+ NEV PAGE *)
PROCEVURE INSERTSEGMENT (VAR STARTCOL,ENDCOL: INTEGER) ;

VAR SURRBLOB: BU)BPTR B
SURRCOMP: INTEGER;
SURRCOLOR: Bl NARY;

A, D
COL: INTEGER
NE‘UPERII: PTRPER!ISECI'ION:
BEGIN
IF TRACEDIAGNOSTICS « ON THEN WRITELN('BEGIN INSERTION *);
SUKRBLOB :s PREVSEGt.BLOB; (* SURROUNDING BLOB *)

SLRRCOMP := SURRBLOB?.CONP;
SURRCOLOR := SURKBLOBY . COLOR;;

te CREATE A NEV BLOB FOR THE NEW SEGMENT ¢)

NEW (BLO!
NITH BLOBo DO BEGIN
IF SURRCOLOR = BKGND THEN COLOR := INK
ELSE COLOR := BKGND;
NEWCOMPNUM :» NEUCOIPNUI L3N H]
CONP :» NNCO

-t

=

z
.‘.".".'....'
‘e

:S'EI;NT i EURRBLOB.
iF &LOI = BKGND THEN PERIN := NIL (® NO PFRINETER LIST FOR BACKGROUND BLOB °®)

m‘?ﬂl'):

PERIN¢ .PREV := PERIN:

PERINY .NEXT := PERIN;

PERIMY .RIGHT :» NIL;

mnmarrrmmonmrmm LINENUN,STARTCOL) ; (® ADD FIRST POINT)
PERINSLEFT ;= PERIN?, RIGHT ;

COL := STARTCOL+! TO ENDOOL DO
ADDRIGHTPERINPOINT (PERIN, LINENUN,COL) (* ADD REMAINING POINTS *)

D (¢
(* WITH BLOBQ)
14 rném 1AGNOSTICS « ON THEN WRITELN('DBUG INSERTSEGMENT 2');

(®* FORM A NEV PERINETER SECTION FOR THE SURROUNDING BLOB ¢)

WiTH SURRBLOBt DO
IF COLOR <> _BKGND THEN BEGIN
(* CREATE A NEW PERIMETER SECI'ION AND INSERT IT BEFORE THE
m‘gllsngNT PERIMETER SECTION

NEWPERING . N(-:x'l' ERIN;
NEWPLRIN® .PREV := rmlm PREV;
PERIMY . PREVY .NEXT := NEWPERIN;

PERIMt .PREV :» NEUPBIII;

(* NOVE PARTOI""IEIIGH‘ BIDOFTHECIIIRM PERINETER SECTION TO THE
NEV PERINETER SECTION

ﬂl'l'll PFIII' IX) BEGIN
¢ . RIGHT := RIGHT: (® SET ll@ﬂ' POINTER OF NEW SECTION *)
ll“ TRACEDIAGN(SI'I(S = ON THEN WRITELN('DBUG Wﬂﬂ‘ 28°);
WHILE (RIGHT?.LINE <> LINENUN-1) OR (RIGHTt.OOL <

> ENDCOL)
DO BEGIN IF TRACEDIAGNOSTICS = ON THEN “ITE)HRIGI‘I" LINE,RIGHT+ .COL,LINENUN-1 ,ENDCOL) ;

RIGHT := RIGHT+.NEXT END;
IF TIACEDIAGN(SHS ON THEN VIITBLN(DBUG INSERTSEGNENT 28°)
NEWPERIN® . LEFT : ll(!ﬂ‘ ® SET LEFT POINTER OF NEW SBCI'IO)
IF lllG'ﬂ'v NEXT' I.INE . LlNENUl-l) AND (RIGHTt NEXTt.COL > RIGHTt. cou

llﬂl‘ to RIGHT®.NFXT;

VHlll.E {_:IGIT' .NEXTS .LINE = LINENUM-1) AND (RIGHTY.NEXTt.OUL) RIGHT?.COL) DO BEGIN

IAGNOSTICS = ON THEN WRITELN(RIGHTY.LINE,RIGHT?.OCOL,LINENUN-1);
RIGHT :» RIGHTt.NEXT; (% SET THE RIGHT POINTER OF THE CURRENT
SECTION TO THE ENDPOINT OF THE LINE
SEGMENT ON THE PREVIOUS LINE THAT IS
D PART OF THE SURROUNDING BLOB)

A-13

.

- ,_,__
E . SR il i

"
—iaat,

e=twery

IF IllGllT « NEWPERINt .LEFT THEN BEGIN 4
s RIGHT!. COL
RIGIT = RIGHT® 4

Anommrsmnpo:mwimn LINENUN-1,COL); END;
NEWPER INY . LEFTY .NEXT :s NIL}
END; " (* VITH PERINt ‘o)
PERIN :e NEWPER
END; (* WITH CURRBLOB *)

(® INSERT 2 SEGMENTS IN THE ACTIVE LINE INMEDIATELY BEFORE THE CURRENT i
SEGMENT POINTER *) .

1F TRACBIA('NOSTIG = ON THEN WRITELNC('DBUG INSERTSEGMENT J3°');
NEW(A) ; NE\HB
At .STARTCOL := SI'ARTCOL. %

.

Bt .STARTCOL := ENDCOL+1;
At _ENDCOL := ENDCOL; !
B¢ ENDCOL := CURRSEGt.STARTCOL - 1i; i
At .BLOB := BLOB; :
By .BLOB := SURRBLOB;

PREVSEGY .NEXT := 4; B
At NEXT := B;

Bt .NEXT := CURRSEG;

CURRSEG := A; (¢ RESET CURRENT SEGMENT POINTER °)

IF TRACEACT IVEL INESEGMENTS = ON THEN TYPEACT IVELINESEGMENTS;
IF TRACEPERINS = ON THEN BEGIN
WRITEPERINS(TTY,SURRBLOB) ; WRITEPERIMS(TTY,BLOB) END;
END; (* INSERTSEGMENT ¢)

(*8P+ NEW PAGE ¢
PROCEDURE ADDBLOB(VAR BLOB,TERMBLOB: BLOBPTR) ;

(¢ THIS IS A RECURSIVE PR(X.‘EDUIE FOR ADDING A BLOB TO THE END OF
THE LIST OF COMPLETED B

BEGIN
{F BLOB = NIL THEN BLOB := TERNBLOB
ElSE ADDBLOB (BLOB* . NEXT , TERMBLOB)
END; (* ADDBLOB *

PROCEDURE RECORDBLOB(VAR TERNBLOB: BLOBPTR);

BEGIN i {
IF (HANDONLY AND (TERMBLOBt.AREA < AREATH)) OR BLOBWRITTEN THEN ELSE t

WRITEPERINS (PERINFILE, TERMBLOB) ;
IF HANDONLY AND (NOT BLOBWRITTEN) AND (TERMBLOB!.AREA >= AREATH) THEN BEGIN
BLOBWRITTEN :« TRUE;

WRITELN ('BLOB OF HAND IS DONE®) END;
VITH TERMBLOBt .PERINt DO DEI.ETEPEIIIS(RIGN' LEFD); 9
(% DISPOSE (TERMBLOBt .PERIN) ;) (ONSP*)

YR TEBLOB (DATAF ILE, TERMBLOR) ;
ADDBLOB (BLOBSDONE , TERMBLOB) ;
END; (% RECORDBLOB *)

(8P+ NEW PAGE ®) t
PROCEDUKE DELETESEGMENT; :
i VAR TERMBLOB, RIGHTBLOB LEFTBLOB REPLACBLOB, ABSORBBLOB: BLOBPTR; H

TENRMCOMP , RIGHTCOMP , LEFTCONP , REPLACCOMP , ABSORBCONP : INTEGER;
RIGHTCOLOR ; BINAI(Y

NEWAREA: REAL

OLUDPERIN: PTR?EII INSECT ION

PERIMLPOINT, P IURPOIN‘I' INTEIIOHPOINT NEXTPOINT: PERINPTR;
COL., ABSORB NTEGER;

BEGIN
IF Tnmlwosrng * ON THEN VRITELNC BEGIN DELETING'):
TERMBLOB := CUR B (* TERMINATING BLOB ¢

TERNCONP :« TERMBLOBt.COMP;
RIGHTBLOB := CURRSEGY .NEXT?.BLOB;
RIGHTCOMP :» RIGHTRLOBY.COMP;
RIGRTCOLOR := RIGHTBLOB? .COLOR;
LEFTBLOB :» PREVSEG!.BLOB;
LEFTCONP := LEFTBLOB?.CONP;

IF RIGHTCOMP = ©

THEN BEGIN
REPLACBLOB := RIGHTBLOB; ABSORBBLOB := LEFTBLOB: 4
.m%l:LACCOﬂP :o RIGHTCONP: ABSORBCOMP := LEFTCONP END b
REPLACBLOB ie LBFI'BIDU; ABSORBBLOB := RIGHTBLOS: 4
REPLACCONP LEFTCONP ABSORBCOMP := RIGHTCONP ENT;

IF TRACEDIAGNOSTICS = ON THEN BEGIN
WRITELN('REPLACING COMPONENT =°,REPLACCONP,
» ABSORBED COMPONENT ', ABSORBCOMP)
WRITELN(*RIGHTOOLOR=" RIGHTCOLOR, ' RIGHT COMP « ' RIGHTCONP) END;

A-14

(® CONNECT THE ENDS OF TWO PERINETER SECTIONS OF THE TERMINATING BLOB IF ITS
COLOR IS NOT BACKGROUND)

WITH TERMBLOBt DO
IF COLOR <> BAGND THEN BEGIN

(% ADD INTERIOR POINTS ON THE BOTTON LINE OF THE TERNINATING BLOB TO THE
LIST OF PERIMETER POINTS *)

POR COL :e CURRSFUY .STARTOOL+!1 TO CURRSEGt.ENDCOL-1 DO
ADDLEFTPER INPOINT (PERIN, LINENUN~1,C0L) ;

(¢ IF THERE IS WORE TMAN ONE PERINETER POINT IN THE B! AND
IF THERE IQ ONLY ONE POINT ON THE BOTTOM LINE OF TllE TﬂllNAflﬂG BLOB,
IT IS AT _BOTH THE LEFT END CF THE CURRENT PFRIMETER SECTION AND THE
RIGHT END OF THE NEXT PERINETER SECTION: DELETE THE POINT AT THE
RIGHT END OF THE NEXT PERIMETER SECTION *)

IF (PERIN®.LEFT <> PERIN? RIGHT) AND (CURRSEG' STARTCOL = CURRSEG?.ENDOOL) THEN
WITH PER{Mt NEXTt DO RIGHT := RIGHTt NI

IF TRACEDIAGNOSTICS = ON THEN WRITELN(' DISI’OSE CHECK 1 ')y

IF TRACEPERINS = ON THEN WRITEPERIMS(TTY,TERMBLOB);

(® CONNECT THE LEFT END OF THE CURRENT PERDMETER SECTION WITH THE RIGHT
END OF THE NEXT PERIMETER SECTION

viTR Pﬂll' DO BEGIN
LEFTY NEXT := NEXT¢.RIGHT;
NFXI" "RIGHT := RIGHT; (% RESET THE RIGHT END POINT!I OF THE
NEXT PERIIE'I'ER SECTION *
PREVt NEXT := NEXT; (84 NNECT THE PIEVIOUS SECT ION ®)
NEXTY.PREV := PREV END; (*® UITH THE NEXT SECTION)

OLDPERIN := PERIN
PERIN :+ PERIN? NEXT (® ADVANCE THE PERINETER SECTION POINTER ®)

(* IF THERE IS NORE THAN ONE PER{METER SECTION, THEN DISPOSE OF THE OLD ONE;
OTHERWISE, ADD THE BLOB TO THE LIST OF BLOBS DONE *)

IF PERII $? OLDPERIN
® DISPOSE(OLDPERIN) *) (ONSPe)
EL\!’. IEXZONDBLOB(TERIBLOB) :
END; ¢* IF, WITH &
IF TRACEDIAGNOSTICS = ON THEN WRITELNC('DISPOSE CHECK 2°);
IF TRACEPERIMS = ON THEN WRITEPLRINS(TTY,TERMBLOB);

(®* CONNECT THE ENDS OF THE TWO PERIMETER SECTIONS OF THE REPLACING BLOB IF ITS
COLOR IS NOT BACKGROUND *)

WITH REPLACBLOB! DO BEGIN
IF COLOR <, BKGND THEN BEGIN

(® CONNFCT LEFT END POINT OF ABSORBED SECTION TO A PERINETER POINT IN THE
REPLACING SECTION *)

PERINLPOINT := PERINt.RIGHT;
WHILE PERIMLPOINT?.COL <> ARBBLOB' PERINt .LEFTt.COL-1 DO
PERIMLPOINT := PERIMLPOINT?.N
ABSORBRLOB! . PERINt . LEFT¢ .NEXT := I’tRllLPOlNT.
IF TRACEDIAGNOSTICS = ON THEN
HRITELN('PERIILPOINT s' PERIMLPOINT? LINE:4,* PERIILPOINT' CoL:4);
F TRACEPERINS = ON THEN WRITEPERINS(TTY, REPLAC‘

PERINRPOINT :e PEIIII' RIGHT;

ABSORBRCOL := ABSORBBLOBt.PERINt .NEXT?.RIGHTt.COL;

IF PERINY. IIGIT' COL > ABSORBRCOL+! THEN

WHILE PERINRPOINT®.COL <> ABSORBRCOL*1 DO PERIMRPOINT := PERINRPOINT? NEXT
ELSE IF PERINt. llIGHT' COL < ABSORBRCOL-1 TH|
FOR COL := ABSORBRCOL-1 DOWNTO PERIMt.RIGHT?.COLs1 DO
lllGIﬂl’ERllPOINT(ABSORBBLOB' PERIN® . NEXT , L INENUN-),C0L) ;

IF TRACB)IAGNOSI‘ICS ON THEN WRITELN(‘DISPOSE DBUG 2B');
IF TRACEPERIMS « ON THEN WRITEPERINS(TTY,REPLACBLOB) ;

(¢ DELETE POINTS IN TH'E MIDOLE OF THE LINE SEGIENT CONNECTING THE TWO
BLOBS WHICH ARE NOT NO¥ PERIMETER POINTS °®

IF TRACEDIAGNOSTICS = ON THEN
WRITELN('® PERIH”’OINT =' PERIMRPOINTt.LINE:4,’,* ,PERINRPOINY:.COL:4)
IF (PEIIIILPOINT <> PERINRPOINT) AND (PERIMLPOINT <> PERINRPOINT¢.NEXT) ﬂlﬂl BEGIN
NEXTPOINT := PERINRPOINT?® NEXT;
WHILE NEXTPOINT <> PERINLPO lN‘l‘ ‘D0 BEGIN
INTERJIORPOINT := NEXTPOINT
NEXTPOINT :+ NEXTPOINT?. NB(T*
[0 DISPOSE(INTERIORPOINT! *) END END:; (SNSP®)
"" TRACEDIAGNOSTICS = ON THEN WRITELN('DISPOSE DBUG 4');
F TRACEPERIMS = ON THEN URI'I'EPI-.‘RIIS('I‘TV REPLACBLOB) ;

(% CONNECT THE RIGHT END POINTS OF THE ABSORBED AND REPLACING SECTIONS ¢)

A-15

e

L

IF PERINLPOINT = PERIMRPOINT THEN
ADDR IGHTPER INPOINT (ABSORBBLOS . PER 1%+ . NEXT , L INENUN, PER INRPOINT ¢ . COL)

ELSE BEGIN
PERINRPOINT® .NEXT :s ABRSORBALOB®. PERII' NEXT' RIGHT;
SORPBLOBY . PER INY . NB('I" RlCllT . Pfl RIGHT; END;

ARSORBBLOB® . PERIN? . R
1P ;IACEDIAGNOSTICS « ON THEN WRITELN(' DlSP(')SI" DBUG 48°);

(® NERGE PERIMETER SECTION RINGS OF THE ABSORBED BLOB AND THE REPLACING BLOS ¢)

OLDPERIN := ABSORBRLOBY.PERIN
IF (OLDPERIN = OLDPERINt. NB(T) AND (OLDPERIN = OLDPERIMt.PREV)
THEN BEGIN (% DISPOSE(OLDPERIN) ®) END (ONSP*)
ELSE
IF IIEPLACBLOD <> ABSORBBLOS
THEN B

(- INSI-.RT PERIMETFR SECTIONS OF ABSORBED BLOB BEFORE PERINt ©)
1F TRACEDIAGNOSTICS = ON THEN WRITELN('DISPOSE DBUG 7°);

OLDPER1IW? .PREVt .NEXT

;= PERIN;

OLDPERIM?Y .NEXT1 .PREV :» PERINt® PREV;

PERINY .PREVY,

= OLDPERIMt . NEXT;

PERINt .PREV := OLDPERINt.PREV;

PERIN := OLDPERIN® NEXT;
(* DISPOSE(OLDPERIN); *)

(ONSP*)

END
ELSE BEGIN
(® ADD PERINETER LIST TO THE BLOB DESCRIPTOR OF THE TERMINATING m (wlica
HAS THE BACKGROUND COLOR IF REPLACING BLOB ABSORBED BLOB)

(* INSERT PERIMETER SECTIONS OF ABSORBED BLOB AFTER P-ll' *
IF TRACEDIAGNOSTICS = ON THEN WRITELN(’'DISPOSE DBUG 8
PERINt .NEXT? .PREV :» OLDPERIN®.PREV;
OLDPERIN¢ .PREV? .NEXT := PERINt.NEXT; :

PERIM := PERINS .NEXT;

TERNBLOB! . PERIN :« OLDPERIN

OLDPERIM¢ .RIGHT := rmluuoin.

OLDPERIN? .PREV :* OLDPERIN;

OLDPERIM? .NEXT := OLDPERIN;

RECORDBLOB(TERMBLOB) END;

IF REPLACBLOB <> ABSORBBLOB THEN AREA := AREA ¢ ABSORBBLOBt.AREA;
END; (¢ IF COLOR <> BKGND *)

END: (* VITH REPLACBLOBt ¢)

IF ABSORBBLOB <> REPLACBLOBR THEN BEGIN
NOTE ~- THE PARENT IS NOT COMPUTED CORRECTLY ®)

IF TRACEPARENT THEN WRITELNC'LINE *,LINENUM:3 muwu
ABSORBBLOBt .COMP:3, ' REPLACBLOB=' , REPLA \B

(84 ALL INSTANCES OF THE ABSORBED COMPONENT IN THE ACTIVE LINE TO
THE REPLACING COMPONENT ®)
SEG := ACTIVELIN

VHILE SEG <> NiIL 60 BEGIN
[F SPov BLOB = WBSORBBLOB THEN SEGY.BLOB : REPLACBLOB;
VITA SEG!.BLOBY DO IF PARENT - ABSORBALOB THEN BEGIN;

PARENT :» REPLACBLOB;
IF rncarazm rm-:n vnnwu'm»uc:m PARENT IN SEGMENT FOR BLOB #°',CONP:4); END;
] SEG'
(* CHANGE ALL INSTANCES OF THE ABSORBED COMPONENT NUMBER IN THE
LIST OF BLOBS DONE TO THE REPLACING COMPONENT NUMBER) .
END; (° IF ABSORBBLOB <> REPLACBLOB *)
(DISPOSE (ABSORBBLOB) ») (ONSP*)
1P TRACED IAONOST 108 LON THEN WRITELN('DISPOSE DBUG 6')
DELETE TWE CURRENT SEGWENT AND THE SEGWENT FOLLOVING THE CURRENT ONE FROM THE]
ACTIVE LINE; SET THE CURRENT SEGMENT POINTER TO THE FIRST SEUMENT AFTER THE
DELETED ONES *) - }
PREVSEG? .NEXT := CURRSEG! .NEXT? .NEXT;
(* DISPOSE (CURRSEG! . NEXT}; *) (ONSP®)
@ DISNSE(RRSEG) ; ¢) (ONSP®)
CURRSEG :» PREVSEGt.NEXT; .
[F TRACEACTIVEL ! NESEGMENTS TYPEACT I VEL INESEGNENTS ;

ON_ THEN
1P TRACEBLOBS = ON THEN TYPI-IBLOIS('I’TY)

14 TIACEPERIHS ON THBN TYPEPERINS (TTY)
END; ¢ DELETESEGMENT ¢

A-16

(*°gP+ NEW PAGE ®)

PROCEDURE UPDATEPERIN(VAR PERIN:PTRPERINSECTION; CURRSTARTCOL,CURRENDCOL,
NEWSTARTCOL , NEWENDCOL : INTEGER) ;

(®* FOR CASE 3 ONLY *)

VAR COL: INTEGER;
BEGIN

{* LEFT SIDE OF PERIMETER SECTION *)
1IF CURRSTARTCOL+1 < NEWST
COL := CURRSTARTCOL+| TO NEWSTARTOOL-1 DO
ADDLEFTPERIMPOINT (PERIN,LINENUN- 1 ,C0L) ;
IF CURRSTARTCOL-~1 > NEWSTARTCOL THEN
FOR COL := CURRSTARTCOL-1 DOWNTO NEWSTARTCOL+1 DO
ADDI.EFTPERIII’OINT(PERlI.LINENUl.COL) H
ADDLEFTPERINPOINT (PERIN, L INENUN,NEWSTARTCOL) ;
PERIN :o PERiMt.NEXT; (® ADVANCE PERINETER SECTION POINTER ¢)
(¢ RIGHT SIDE *)
IF CUIRI"NII!OL > NEUENDm
FOR COl CURRENDCOL - IK.WNT EWVENDCOL+ 1 DO
ADDI(I(IH'PI‘.‘RIIPOINT(PERM LINENUI 1,00L);
IF CURRENDCOL < NEWENDOOL - | THEN
FOR COL :» CURRENDCOL+i TO NEWENDCOL-1 DO
ADDRIGHTPER IMPOINT (PERIN, LINENUN,COL) ;

ADDRIGHTPER IMPOINT (PERIN, L 1 NENUM ,NEWVENDCOL) ;
END; (* UPDATEPERIN ¢)

(*8P+ NEW PAGE
PROCEDURE msmrummcwn CURRSEG:SEGPTR; STARTCOL, ENDCOL: INTEGER) ;

VAR NEWAREA XLINEAVE: REAL;
BEGIN
IF_ TRACEDIAGNOSTICS = ON THEN WRITELN('BEGIN CASE 3 PROCESSING');
VITH_CURRSEG? .BLOBt DO
IF COMP <> @ THEN AREA :-AREA'M'STAITCOLO 1

IF (CURRSEG? .BLOB? .COLOR (> BKGND) (CURRSEG? . BLOB? . YNIN <> LINENUN) THEN
UPDATEPER i (CURRSEG? . BLOB' PERII.CURRSW! STARTCOL, CURRSEG? . ENDCOL , STARTOOL , ENDOOL) ;

IF TRACEBLOBS = ON THEN WRITEBLOB(TTY,CUR * .BLOB) ;
IF TRACEPERINS = ON THEN WRITEPERINS (1TY, CURISWV BLOB)
END; (® CASE3PROCESSING

(*8P+ NEW PAGE *)
PROCEDURE PROCESSLINE;

VAR ONEZERO: INTEGER;

BEGIN
1IF LINENUN = 1 THEN BEGIN
NEW(BLOB) ; (* CREATE A BLOB DESCRIFTOR FOR THE BACKGROUND °)
wITH BLOBG Do amm

.Nll.:
1L END;
(® INITIALIZE THE ACTIVE LINE *)

NEW(ACTIVELINE); (* THE FIRST_SEGMENT CORRESPONDS TO

WVHICH IS TO THE LEFT OF THE FIRST ml.lllﬂ ®)

ACTIVELINET .STARTOOL := NININT*1;

S S ko

Al 1

NEV (CURRSEG) ; (* THIS SEGNENT DESCRIPTOR CORRESPONDS TO THE BACKGROUND
UHICH IS TO THE K1GHT OF THE LAST COLUMN .)

ACT IVELINE?t . NEXT :

CURRSEG! . START (I!L . IAXINT'
CURRSEG! .ENDCOL := MAXINT- 1
CURRSEGY .BLOB := IU)B.
CURRSEG? .NEXT :»

END; (¢ IF I.INBNUI el ®)

A-17

-

-1

Aok ind i

TR N T

IP LINENUR > NSKIP THEN BEGIN

CURRSEG :s ACTIVELINE; (® IN ITML THE CURRENT SEGNENT POINTER *)
NEWSEG := NEWLINE; (% INITIALIZE THE NEV SEGMENT POINTER *)
REPEAT

¥iTH N

EWSEGt DO BEGIN
IF TRACEDIAGNOSTICS = ON mu BEGIN
VRITELN (*CURRSEG? . STARTCOL = ' ,CURRSEG? .STARTCOL,® CURRSEGY. * , CURRSEG? . ENDCOL) ;
HIITI-ILN('HEUSN' STARTCOL = ° érm ' NEWSEGY .ENDCOL = ° mncon. hD;
IF CURRSEG?.BLOBY.COLOR = INK THEN ONEZERO :e 1
ELSE ONEZERO := 0;
WHILE STARTCOL > CURRSEG? . ENDCOL +ONEZE! nononu.i'rmurr; (*CASE 1 ®)
IF TRACEDILGNOS"(S ON THEN WRITELNC® DBUG PROCESSLINE 1°);
1F_ENDCOL < CURRSEG?* . STARTCOL-ONEZERO INSERTSEGMENT (STARTCOL ,ENDCOL) ; (* CASE 2 ¢}
CASE3PROCESS ING(RRSB?.STARTOOL Dlm
CURRNEGT . STARTCOL := STARTCOL
CURRSEG! . ENDCOL ;e ENDCOL;
END; (® WITH NEWSEGt &)
PREVSEG := CURRSEG; (® ADVANCE THE PREVIOUS SEGMENT POINTER ®
CURRSEG :« CURRSEGY.NEXT; (® ADVANCE THE CURRENT SEGWENT POIN'I'H ®)
:w NEWSEGt NEXT (® ADVANCE THE NEV SEGMENT POINTER ¢)
m o LAST EVSEGY . NEXT ;
F TIACEACI'I INESEGMENTS = ON THEN TYPEACHVEIJNWS‘
{F CURRSEG = NIL TUEN BEGIN HRITELN(TTY.'EIROI cunsm-uu.)3 PAUSE BXD;
WHILE CURRSEG? .NEXT <> NIL DO DELETESEGMENT; (® PROCESS ALL REMAINING
IN TAE ACTIVE LINE EXCEPT THE
LAST SFGMENT ¢©)

END;: (° IF LINENUN > NSKIP ®)
END; (® PROCESSLINE ¢)

(*SP+ NEW PAGE ®)
BEGIN (® MAIN PROGRAN ®)

WANDONLY := BLOBVRITTEN := FALSE;
nmumne INPUT IMAGE NAME:');
READLN; READ(INPUTNANE) ; (ONSP®)
m.\h‘ninrmllm mrurnms)- (ONSP®)
REVRITE(DATAFILE, ‘ DUNNY . D, (ONSP®)
WRITELN(*TYPE OUTPUT rnnmﬁ FILE NAME:");
DLN; READ(PERINNANE) . (ONSP*)
REVRITE (PFRINFILE , PERINN (NSP*)
WRITELN (' TYPE THR ESHOLD Fim BLOB BLOB AREA:°);

READLN; READCIAREATH); AREATH :» IAREATH;
WRITELN (' PERINETER LIST COMPACTED EVERY X LINES; TVPE X:');
READLN; READ(LINEGROUP

):

TRACEPARENT := FALSE;
VRITELNC'TYPE # OF LINES TO BE SKIFPPED AT THE TOP OF THE IMAGE:®)
READLN; READ(NSXIP);
RECURS := FALSE;
WRITELNC'TYPE ''1'* FOR INTERACTIVE DEBUGGING')
WRITELN(®* OR °''U'’ FOR UNINTERRUPTED Pmlﬂé ")
READLN:; READ(CMD) ;
IF CMD = *1°' THEN INTERACTIVE :» TRUE
ELSE INTERACTIVE :e FALSE;

VRITELN('TYPE **T** TO TYPE OUT LINE NUNBERS:')
READLN; READ(ONOFF) ;
F ONOFF « 'T' THEN TYPELINENUMS := TRUE;

LINENUM := ©; NEWCOMPNUM := ©; BLOBSDONE := NIL; RECYCLEDPTR :+ NIL;
CHARTOT := 0;
nswmnmn
FOR I := | TO 16 DO BEGIN

NFWN (ARRAYP (1)) ;

ARRAYP(111.NEXT := ARRAYPUIs11; END;
ARRAYP(11)¢ .NEXT := NIL;
IF NOT INTEIIACI'IVE THEN mgllx :. l'

TRACEBLOBS := OFF; S : TRACERUNLENGTHS 1= OFF;
TRACEACT | VELINESEGHENTS :» OFF; cr:blmosms i OFF;
L it T A P i :

REPEAT
¥ aﬂ%'ﬁ?;’! IILII !i'oo 'l'l’ !l.'l rl‘lc ovn“ OR "st'l);
READLN

IF (cnb Lﬁglg’ntﬂm n
E]
WRITELNCTYPE m OF LINES TO BE READ: '),
READLN; READ(NLREAD) END

FLSE NLREAD
ELSE OND :» LINE.IN;

FCID-LINEINTHENNINTIIB :» 1 TO NLREAD DO BEGIN
LINENUM :a2 LINENUM ¢

i
1F TYPELINENUB THEN WRITELNC'LINE ° +LINENUN:3)

GETLIN
IF (LINENUN = 1) Ol (LINENUN > NSXIP) THEN BEGIN
13 L::E:N“l MOD LINEGROUP = @ THEN PACKPERINS;

CREATERUNLENGTHS ;
PROCESSLINE;

END;
END

ELSE IF (CAD ¢> STOP) AND (CMD IN CNDSET) THEN BEGIN
READ (ONOFF) ;
CASE CMD OF
DIAGNOST ICS: rnmucnosncs = ONOFF;
LISTBLOBS: TRACEBLOBS : FF;
LISTPERINS: TRACEPERINS :a onom
LISTRUNLENGTHS: TRACERUNLENGTHS :s
L‘ uencnvsémsmnms. rucucnvu.msbmms 1« ONOFF

EN
END; (¢ JF §)

UNTIL (CMD = STOP) Oll (LINENUM = NLINES) OR BLOBWRITTEN;

LINENUN :» LINENIJ 13

SETL.INE; PROCESS A LINE WITH NO RUNLENGIHS TO ®)
PROCESSLINE; (' ENSURE COMPLETION OF BLOB PROCESSING *)
WRITELN C'LINEBYLIN -- ALL DONE*) ;

PROGRAN SCAN
C - Program to read unformstted sequential date files of hasd deta

C - that were ‘n-nlod with prog LINEBYLIN oa EIKONIX soaas,

C - and extract positions in space of the Huon and the oorrupoldlu
(C:- isnterdigital spaces.

1 FORMAT (14, 1X, [4)

2 FORMAT (/' Tuu is Tiloname of isput data fite *)

4 FORMAT (Q,

S FORMAT (14)

6 FII’ORIA‘I' (* "FINGER #" INCLUDES INTERDIGITAL SPACES - | = LITTLE
? FORMAT (/1X, 'FINGER l AIRAY P(SI‘I'ION' 3!.’“‘[.’ ""AL
oSX. CLENGTH® | 4%, U IDTH" 2k "RATIO subr £},4X, ‘pIST!)

s ronuu(zilzwxlssx zxmth
oxrszxrs.z. X.F8.2,2%
9 FORMAT (/8' Length of :cn 'udo' (12«6am) = *)
1@ FORMAT (I2)
11 FORMAT (/l)(.‘ Leagth of soas 'll‘o' e .14, (12«6 ma)?')
12 FORMAT (/®° Aulo for fisgers = ')
13 FORMAT (F6.0
14 FORMAT (/8 Aulo for themb = ')
1S FORMAT (/8' Finger asgle = "PGO Theab engle = "’5.0)
16 FORMAT (/////lx 'l-g8 hlo 14A1 +2X, 'Ostpat file ',14A1)
17 FORMAT (2X, [
19 FORMAT (/° M Thnb Crotoh Aandwidth = ‘.N 2,2, 'Porin = °,
*F13.2,2X,'Ares = ' F13.2,2X, 'Ratio (P®%2/ £ 3
20 PORIAT (/8 Type | to huo date pruhﬂ o-l .! end of test *)
21 FORNAT (/8' 'l' po 1 to mark measure poiats on paim plot)
22 FORNAT (7(X, 1}
23 FORMAT (/° tnhu Hand: Porim » *,F13.2,2X,Ares = ' ,F13.2,2X,
*'Ratio (POe2/A) = '.N 3
24 FORMAT ('’ Tygc if youw waat to ohnu parameters ')
25 FORMAT (3!3 7F16.3,/,¢10X,7F16.3))
26 FORMAT (‘vt semeric codes for SUBJECT 1D, SESSION, TRIAL *)
27 FORMAT (14,
28 FORMAT (/° 'lypo u filename for owtput deta file *)
29 FORMAT (/' 'l'yg\8 DIST aad R criterion for owrvaturs snal’)
30 FORMAT (
gl FORMAT (/' Typo u-tnr (0dd) of points to skipped at ntart')
DINENSION END(2) ,MID(2) ,HEAD(2) ,TENP(2)
DIMENSION FNGTIP(18,2) , FNGLEN(18) FNGUID(!O) VALUE(30)
DIMENSION SLOPE(10) ,ZYER@(10), INEDe
DINENSION TANGLE(noo) DLENG(wo) CIIIVE
INTEGER 1DATA(6000) , FINGER FNGNUI(IO) l\illﬂ'ﬂ(lt) IDIN (6000)
c LOGICAL®! IFILE(34), IFILE2{34)

ANGLE) = 90. 'Defavitl criterios sagle shift for l‘iullpl
ANGLE2 = 90. tDefasit criterion engle shift for thead
iDIS = I8 Default dist betwees points

DISTC = 40.0 'Starling dist from fingtip for ourve
CRIT = 0.98 tCriteriog fit for owrvature fa.

{START = 201 t1Skip these first poinlsg

IFLAG » @

IF = 0

TYPE 2

ACCFPT 4, 1S),(IPILE(J), Je}1,IS1)

TYPE 28

ACCEPT 4, IS2, (IFILE2(]), J=1,1S2)

A-19

TYPE 26

#(Y:Cl?';a‘a’?. 1AUTH, ISESS, ITRIAL
ACCEPT S, IFLAG

TYPE 2

ACCEPT S, NPLOTF
TYPE 24

ACCEPT S, IF
IF (IF .EQ. © G0 TO 49
TYPE 9

29
ACCEPT 30, DISTC,CRIT

ACCEPT S, ISTART
calL mlmu IFILE, IS1)

IBAD (t i END-S!;W-SI) IDIN(K) , IDIN(Ke+1)
STOP ' 2 NO'EOF 2

IF (IDIN(K) .NE. ©) GO TO

s K - wurunrd overcus poiats
Q10 5)°

CALL CLOSE(1

CALL S')ITIIDATA.IDIN NPTSe1)

Angle algoritha
Isttialize counters - find angle as move throwgh deta, constantly
gdchn the uor.’o angle. ove through data wilh s window
size IDIS, in steps of IDIS/2. Poiats avegd. with triangle fa.
Whea find & large shift in the avere o angle (ANGLE for [ingers,
for thumb) store loocatioa of K' reinitialize
sversge sngle. Store the looation of the tip in the
deala arrey, as well as X and Y ﬁoutions in space.
Calculate from these both Iu.l and width of fingers
END(2) = AVE(IDATA, ISTART
END(1) = AVE(IDA'I'A ISTA R‘I’
HID(2) = AVECIDATA, IDISe ISTART+1)
MID(1) = AVE(IDATA,IDIS¢ISTART)
a

S 283

aANAAAANAANN

HEAD(2) = AVE(IDATA,2®(DIS+ISTART+1)
HEAD(1) = AVE(IDATA,2¢1DIS+ISTART)
ANGLE = ANGLEl

FINGER =)

'I‘CNT.-]

ALPHA = FALPHA(END,HEAD)

SUNALP = A

AVEALP = ALPHA

DO 200 §=3%1DIS+ISTART,NPTS, IDIS
END(1) = MID(

END(2) « NID(2)

NID(1) = HEAD(1)

N1D(2) « HEAD(2)

HEAD(2) = AVE(IDATA,1+1)

HEAD(1) « AVE(IDATA,D)

» DALPHA = (ALPHA ~
g 1P (:mm LE 4) PllN‘l‘ l7 1,END(2) ,END(1) ,HEAD(2) ,HEAD(!} ,
* EAI’

IF (ICNT .LT. 6) GO TO 99 Move at least 10en before test

IF (DALP#A .GT. ANGLE) GO TO 160
9 N oN-+|

ICNT = ICNT » |

- * ALPRA

Nel|
ICNT = @
sumu-mu

i {f el 2. 3 s

Por fingers fine tune the lonﬂon of the t ’

b{ draving & hn thronh the eester of the Tinger and fiad the point
of itersection wi the ‘

. IW.TSGIDAI'A l 1D1S-1,52.,-2)

= IDELTS 1-1DIS~1.82.,2)

s IDELTS .I-WIS- .72 -2)

= IDELTS llDA'I‘A.l 1DIS-1 .72..2

Mamr

A-20

LINE(FINGER®4-3) «J- 1
LINE(FINGER®4-2) =L~ |
LINE(FINGER® 4-1) M- |
LINE(FINGER®4) _=K-1
XAVEL = AVE(IDATA,L)
XAVE? « AVE(IDATA.N)
YAVEL » AVE(IDATA.L-1)
YAVEZ « AVE(IDATA,N-1)
XLM < (XAVEL + XAVE2)/2
YLM = (YAVEl + YAVE2)/2
XAVEl » AVE(IDATA,J)
XAVE2 = AVE(IDATA.K)
YAVEL « AVECIDATA.J-1)
YAVE2 = AVE(IDATAK-1)
XIK = (XAVEL + XAVE2)/2

YJK = (YAVEL + YAVE2)/2

SUOPE(FINGER) = (YLK <2410 /XL ~ X1
YZERO(FINGER) = YIK - SLOPE(FINGER) *XJK

Ll =L
ise Lt = L1«
APRIME « FU)AT(IDATA(L] ~-1)) - SLOPE(FINGER) ® PLOAT (IDATA(L1))
IF (ABS (YZERO(FINGER) - APRIME) .LT. D) GO TO 160
ll-‘(l.ll. LT M GO TO 1S58

D 2‘1)
GO TO 150

160 TYPE 13,
PNGNUI(FINGER) * LI~}

FNGTIP(PINGER,2) = IDATA(L))
FNGTINFINGEI 1) = IDATA(LI-1)

G0 TO 190
168 PNGNUI(FINGEII) « 1-1DIS
FNGT IP(FINGER,2) = MID(2)
FNGTIPCFINGER, 1) = MID(])
190 FINGER = FINGER + |
X IF (FINGER .EQ. 10) GO 10 201 {Fowad eff fingers
200 CONT
201 IDIS = IDISe2
C - Calonlate lu‘th of finger
DO Si0
!
IF (1 .GT. 6) J = -1]
C - DELTAX = FNGTIP(I,2) ~ FNGTIP([+J,2))
C - DELTAY = FNGTIP(1,1) - FNG'"P(IOJ 1)
C -~ FNGLEN(1) = %T(DB.TAX *2 - DBLTAY"
FNGLEN(1) = NCE (IDATA,FNGNUN(]) + | ,FNGNUN(1+J)+})
sle CONTIN
c TYPE 18,1
C- Cole'lao -;gth of fingors at & distance DIST back from tip.
no 521 1 = 1,9,2
- lm.TS(lDATA.FNGNUI(I)H DIST,~2)
» IDELTS(IDATA, FNGNUR (1) +1, DISI‘ 2)
c - DELTAN < FLOATIDATA (L)~ TDATA N3
C - DELTAY = FLOATCIDATA(L-1) - 1DATA(N-1))
C - FNGWID(1) = SQRT(DELTAXN®®2 +» DELTAY®*2)
FNGWID(1) = DSTNCE(IDATA,L.W) !
DIST = 123, !
IF (1 .EQ. 7) DIST = 92,
IF (1 .EQ. 9 | = |0
IWIDTH(§+2) « L-1
JWIDTH(1+3) = N-1
521 CONT INUE
c TYPE 10,2
C -~ Caloulate curvature of fingertips from ¢ to ~ DIST from tip.
C - First find della angle for tangents arovad the tips, them fit
g = the angle function wilh a straight line sad store .iopo end fit.
g
c N
DIST = DISTC N
DO 530 1= :
s2s CALL TANAN&HDA‘I‘A TANGLE ,DLENG, DIST , FNGNUN(1) +1,6, 12,0
CALL LINFIT (DLENG, TANGLE NP, SLOPEZ, k) j
IF cnsm .GT. Cll‘l‘) GO TO 529 “
DIST = DIST ~ 2.0 !
lF (DISI‘ .LT. 4.6) G0 TO S29 3
' $29 CIJlVE(l) = SLOPE2 .
CURVE(1+}) = DIST 4
DIST = DI SI'C !
TYPF S:!I "
s31 et
530 oo'm
C TYPE |0.3

A-21

= Caloslste Handwidth, perimeter and ares 981! om in from !ho tips of
- the littls and index fingers, respectively.
L « IDELT S(IDATA FNGNUM(1) +1,185.,-2)
M = JDELTSCIDATA,FNGNUM(7)+1, +226. 2)
- DELTAX = FLOAT (IDATA(L) - IDATAON))
DELTAY = FLOAT (IDATA(L-1)} = lgA;A(l-l))

an

ane
)

HNDW CE (IDAT
CALL AIPIIK(IDA‘I'A L.M, AIIEA PERIN)
FINGAR = AREA
RN = PERIN
IWIDTH(2) = L-1
INIDTH(I1) = M-I
TYPE 10,4

O

Find ares and perimeter — terminate hand from poiat 10es
proximal to the tip of the thumb to & poiat 130m proximel to the

tip of the lnlllo f:n
® L = IDELTS "NGN‘UH(I)'I 267..22

N lDﬂ.TS(lDATA \FNGNUN(9) + 1,265
IHID'I'II(I) . L-
INIDTH(14) = N-
CAL!E. ﬂ?gll(lDATA +L M, AREA ,PERIN)

an00

- Priat info and write feature valuwes to fite. Featsres writtem in order:
leagth, width, ratio(l/W) handvidth, finger perineter and ares,
retio (finger A/P), haad perimeter nd -rcn. ratio (AP).

RATIO = ((FNGPRNM/20.5)*°2)/(FINGAR/420

IATIOZ s ((PERIN/20.5)%°2,)/(AREA/420.)

IF (IFLAG .NE. 1 551
- PRINT 22, (lVlM‘:I'

AnNOO
1)

an
2
232
.3
EEY
8

PRINT

FNGPRN/20.S.F mcm4zo..uno
PRINT 23, PERIN/20.5 huuze..uh

s§| CALL ASiGN (1, IFILE3, IS2

DO 600 1e1,5

VALUE(I) = FNGLEN(192-1)/20.5

VALUE(1+S) « FNGUID(1®2-1)/20.5

VALUE(1+10) = FNGLEN(192-1)/FNGVID(12-1)
CONTINUE

VALUE(16) = HNDV1D/20.5

VALUE(17) = FNGPRK/20.5

VALUE(18) = FINGAR/429.
VALUE(19) = RATIO

ana g

VALUE(17) = PERIN/20.5
VALUE(18) = AREA/420.
VALUE(19) I'U\Tl02
DO 601 I=1,9,2
VALUE(1+19) « CURVE(D)
VALUE(1+29) = CURVE(l+1)

CONTINUE
NUNFEA = 29
WRITE (1,2S5) (1AUTH, ISESS, ITRIAL, (VALUE(J), J«1 ,NUNFEA))
Plot hand perimeter anmbering points for finger tips ead interdigla!

spaces.
Y = 600
XOFS'I' = 100

CALL INITT (960

CALL MABS(IXOFSI‘OIDATA(Z) IYOFST-IDATACI))

DO 760 1=3,NPTS,2

CALL DRVABS (INOFST+ IDATA(1+1) , IYOFST-IDATA(1))
NPLOTF I'Iﬁ 1) G0 TO 710

[Ir]y]

YN

-0
-
"

i
g
:

CALL WOVABS (1XOFST, IYOFST+YZERO(K))

1= 100,800, ioo
1Y = IPIX(YZERO(K) sun(x)-mrun
CALL DRVABS(IKOPST+I, [YOFST+1

A-22

e

e

PUNCTION FALPRA (END,HEAD)
C - Fuaotion 1o osloviate the angle of this “t““ of tl\o perimeter

C ~ ssiag X and Y of the beginning and ud of
C - Aulu.&fron 0 to 190 thu -180 to
END(1) ,HEAD
DATA RADIAN)S7. 2967 P13, 1416/
DELTAX = HEAD(2) - END(2)
DELTAY = HEAD(1) - END(1)
iF (DB.TAX NE 9 G0 T0 S

ALPHA « P1/2. & RADIAN

g‘){_ﬂﬂ.&A’V CLT. 0) ALPHA ~ ALPHA ¢ -).0
s ALPHA » ATANZ(DE.TAY DELTAX) ® RADIAN
108 FALPHA .

he segment

FUNCTION 1MOVX(1X,WOVX, 1, IDATA,LARGER, IDIRCT)
Punotion to move s distence NOVK oa pon-our from poiat IX in
- duroohon IDIRCT (+ for forvard move, = for backwerd). s
-8 t' to tell whether the aew X(Y) is goisg to be l-rtor or smaller
- thn Returas (1) for the sew X(Y) pout in the data list.
l’) IBISION IDATA (6000)

C -
C
C
c

-
=) oo

IX ¢+ NOVX
IRCT .LT. @) L = -2
LARGER .LT. ©) IXPRIN = IX - WOVX
B.AIGER .GT. ® G0 10 50

L
IDATA(J) .LE. IXPRIN) GO TO 100

IDA'I‘A(J) .GT. IXPRIN) GO TO 100

E85-855RNE

100

Sgg

FUNCTION IDELTS(IDATA,L,DIST,J)
C - Pssotios to find the loostios of the X,Y pair ll the arrey IDATA that is
C - the distsace DIST from the X,Y pair po}-!o d to by L. The direction
C - and ueruut of search tbrouh the array is determined by J.
DIMENSION 1DATA (6000)
1 FORMAT (X, 'ERROR IN lm.'l'S')

2 FORMAT (X,'IDELTS: D « ' ,F6.0)
D=260
10] =L
TAS = ©
X1 = FLOAT(IDATA(1))
Y1 = FLOATC(IDATAtI-1))
20 |)]
X2 » X1
Y2 = Y1
X1 = FLOATUIDATA(I))
Y\ = FLOATUIDATA(1-1))

DELTAX = X2 - XI

DELTAY = Y2 - Y1

DELTAS = DELTAS ¢ SORT(DELTAX®®2 « m.TAY“2)
IF (ABS(DIST - DB.TAS)zsL'I' D GO 10 1\

C- IF (D .LT. 24.) GO TO
C - TYPE 1
C - STOP
25 IF (I .GT. 1) GO TO @
D = 2%
GO TO 10
38 IF (1 .LT. 6000) GO TO 20
D = 2%D
G0 TO 10
160 IDELTS = 1
RETURN
END

FUNCTION DSTNCE(IDATA,L,N)
C ~ Fenction to oslovlete the dlstance betveen two points, IDATA(L)
C ~ esd IDATAUD wsin Sh“ trisngelar aversging.

DIMENSION IDATA

KAVEL = AVE(IDATA,L)

XAVEN « AVEUIDATA.W)

YAVEL o AVE(IDATA,L-))

YAVEN = AVE!IDATA n-1)

DELTAX = XAVEL - KAVEM

DELTAY = YAVEL - YAVEM

DSTNCE = SQRT(DELTAX®*2 + DELTAY®e2)

g‘IDUIN

A-23

N W‘wi??——
. o, B

by hh

FUNCTION AVE(1DAYA,I)
g mouon to do o five point triangular average aad retura valve es
DINENSION 1DATA (8000)
PART! = FLOAT(IDATA(1-4))%0Q, |
PART2 = FLOAY(IDATACI-2))%0.2
nm o FLOAT(IDATA(1))®9 .4
o FLOAT(IDATA(1+2))%0.2
ms ® PLOAT(IDATA(]1+4))%0, |
:g:u;"rm 1 *PART2+PARTI+PART4+PARTS

END

FUNCTION IXYGET(IX,J, IDATA)
P‘uhol to find o point with an X(Y) egviveleat to ssother poiat (IX)
is the starting point for the wearch throwgh the array.
f J>10 the search will be backwards throwgh the array.
ohru (1) Tor the aew poiat.
DINENSION 1DATA (6000

LI B)
G oo e

se 0
—y bee NN

8*58%55"-37 "2
L]

5

S o
&
=

SUBROUT INE AIPIII(IDATA.L.l AREA ,PERIN)
€ - Rostizse to calon)ate srea snd poruo‘or of » portion of the l\ud with
C - bowadries IDA'I‘A(IJ to IDATA(

DIMENS1 A (6000)

ONOID

PERII = 9.0
X2 » FLOAT!IIMT‘(L))

¥2 FLOAT(1DATA(L-1))

po Isle2,4,2

X1 = X2

Y1 « Y2

A2 » FLOAT(IDATA(D))

Y2 « FLOAT(IDATAUI-1))

DELYAX « X2 - X1

DELYAY = Y2 - YI

PERIN s PERIN » (DELTAX®®2 « DELTAY®®2)
AREA = A o DELTAX ¢ ((Y1+Y2)/2.0)

2 CONT

INVE
DELTAX = FLOAT (IDATA(L) - IDATA(ND)
:IE%‘UI;I AREA + DELTAX ¢ ((FLOAT(IDATA(M-1)+IDATA(L-1)})/2.0)

SUBROUT INE SORT ¢ IDATA, IDIN,NPTS
g- Rostise to sort date so l‘ut it .Ivon starts at the lower wrist.

mmusron 1DATA (6800) , IDIN (6089)

DO 18 I=NPTS,
10 mmuun "“0. 1) G0 TO 180
109 1P (uns-n .GT. 19) GO TO 260

D0 110 (=
10 |DATMI) s IDIN(D
m ll

200 L=
NL 0 l-l-l NrTS 1Stert with Y

1
IIM‘I’A(L) * IDIN(K)
210 CONT INVE
DO 220 Kel, |-2
LeL-o
TA(L) - IDIN(K)

A-24

R

S <) NUPELT SO i ISP SNy

T P AT T Ay

SUBROUT INE TANANO(IDATA.TM.E DLENG, DIST,
*JISTART, JSTEP, JRANGE ,NP)
C - Rowtine to ululnlt the sagle fonotion srownd e sectios of the
C ~ periweter. The section ig - to ¢ DIST from JSTART. The leagth of
C = the perimeter for each tungent is JRANGE, aad tangentls are ocslowlated
C ~ for each section in data intervals JSTEP. NP is the asmber of engles
g - 7-!0:'!‘-\00 Angles are stored in TANGLE und the correspoandiag
= leng i t
DIMENSION IDATA(6000) TANGI.E(IOO) DLENG(100) }
DATA l’l/3 1416/ ,RADIAN/S7 . 296/)
- TS(IDATA JSTART,DiST,-2)
='- ga.rsumn | ISTART .DIST2) f
TLENG = ©. 3
DO 108 l-L.IlJSTH’ 4

AVECIDATA, 1+ JRANGE) - AVE(IDATA, [

AVE (IDATA, [+JRANGE-1) - maumh.t -
FLOAT (IDATA(1+JRANGE) - IDATA(1 |
FLOAT (IDATA (1 + JRANGE- 1) ~ IDATACI-1)) P
TLENG « (SORTIDX®®2 + DY®$2))/2.0 + TLENG !
DLENG(NP) = ‘I'LI-:NO ;
IF (DK .KE. ©.) GO T0 20

AGLE = 172 ® RADIAN

(l)gmv .LT. 0.0) ANGLE « ANGLE ® ~1.0

TO0 30
ANGLE = ATAN2(DY,DX) ® RADIAN
IF (NP .BQ. [} ANGLE! = ANGLE
1F (ABS(ANGLE-ANGLE1) .LE. 180.) GO TO 40
IF (ANGLE1 .GT. 0.9) ANGLE = ANGLE + 360.
IF (ANGLE! .LT. ©0.0) ANGLE ANGLE - 360.
40 TANGLE(NP) = ANGLE

0n
282
sasay

g3

s
{
SUBROUTINE LINFIT(DLENG,TANGLE, NP,B,R) ¢
C ~ Rostine to give a loss! sqguares fil to dats with u line Y=aAeBX. §
cC~-X array of dats for independeat variable 4
cC-~-Y array of data for dependent varisble 4
C - NP number of pairs of data poiats 3
C~-A Y intercept ;
C - SIGMAA standerd devistion of A
C-B slope A ¢
C - SIGMAB standard deviation of B I
g -n lisear correlation coefficient B
DINENSION TANGLE(100) ,DLENG(100)
SUM « FLOAT(NP)
- 3
L »
SUNX2 = @
SUny2 « 6
SUNKY = 0.
DO 106 1=1,NP
1= (3).
¥YI = TANGLE(D)
SUNX « SUMK « X1
SUNY « SUNY » Y1
SUMX2 = SUMXZ + Ki®®2
SUNY2 « SUNY2 « Y]ee2
SUMXY = SUMXY « XI°Y!l

‘l:“ CONTINUE
C ~ Celosiate cosfficients and standard deviations

DELTA = SUN ¢ SUNX2-SUnNXee2 :
A o (SUNX2°SUNY-SUNX*SUNXY) /DELTA v,
8 . '(gI.IIXY‘ﬂII-SIIIX’WIY)MTA :
VARNCE = (SllﬂZOA“Z‘SUHOD“Z‘S“lXZ 2¢ 3
L(ASSUNY +BeSURXY-A*B*SUNX)) /C .
SIGHAA = SORT (VARNCESSUNX. /m.TA) :
SIGHAB = T (VARNCE®*SUN
=ﬂ“”$m‘ m-mtwnvson(na.n- (SUNSSUNY2-SUNY**2))

Appendix B

DOCUMENTATION OF LINEBYLINE

Gregory K. Myers
SRI International

I INTRODUCTION

This algorithm is taken from "Image Processing Algorithms for In-

dustrial Vision,"

a report by Gerry Agin of SRI International. The
algorithm is referred to as "connectivity analysis.” It segments a
binary image into '"blobs' (connected regions) of the same 'color"
(gray level). Only one pass is made through the image, and only one

line is accessed at a time (hence the name "LINEBYLINE"). Features of

each blob are computed, such as the area, center of gravity, bounding
rectangle, and perimeter points. This document explains the concepts

used in LINEBYLINE and provides an example of processing.

ITI RUN-LENGTH CODING

The first step in processing is the run-length coding of the binary
image. Each line of the binary image is converted into a series of run-
length segments. A "1" denotes the color of "object" and "0" denotes

the color of '"background."

To illustrate how run-length coding is done, let us consider the

following 8 x 8 binary image:

Column number:

Row number:

O~ W N -
cgovococovooov oo
[>aleNeNoNeNoNoll ol
T ORPMPRMEMEREROT N
COO0OORMFEFOOOT W
TOQMMEKFEFOMRD &
TOFMEMOHFKRKMMD W
TCHMFREROOOCOHRKRT o
COHMROOHFHKFHOD
TOOHKHKMHMFRHROOT o®
cooococoocoooo

i

-
=

(Note: '"b" denotes an implicit "0" beyond the margins of the image.)
p

The algorithm for run-length coding examines each pixel of the row
in turn and records the column number of any element that differs from
its predecessor. A 0 is assumed to precede the first element and to
follow the last one. For this reason, if the last column of some par-
ticular row contains a 1, a transition will be recorded in column 9.

In general, there will be twice as many column numbers recorded as

there are segments of contiguous ls in the row.

The result of run-length coding our example is as follows:

Row 1: Col. 4,7

Row 2: Col. 1,3,5,8

Row 3: Col. 2,3,4,6,7,°
Row 4: Col. 2,6,8,9

Row 5: Col. 2,5,8,9

Row 6: Col. 2,3,4,6,7,9
Row 7: Col. 2,3,5,8

Row 8: Col. 6,7

Later in this paper, we will refer to the run-length segments that

make up a line or row. These are contiguous sequences of pixels of
either color (0 or 1). For example, row 1 has exactly three run-length
segments. The first segment is all Os and extends from minus infinity
up to (but not including) column 4. The second segment is 1ls rums from
column 4 to (but not including) column 7. The third and last segment
consists of Os from column 7 to plus infinity. Because every row must
start and end with 0, there is always an odd number of run-length seg-

ments in any line.

The starting and ending column numbers of each run-length segment
are stored in a linked list for later processing by the connectivity-
analysis procedures. When the connectivity analysis for all the run-
length segments in a line has been completed, the run-length segments
are deleted. The creation of run-length segments from a binary image

line could be easily performed in hardware.

IIT INTRODUCTION TO CONNECTIVITY ANALYSIS

The purpose of connectivity analysis is to separate a binary image
into connected components. We call these connected components blobs.
A hole is a special case of a blob entirely surrounded by another blob
of the contrasting color. When connectivity analysis is applied to the
8 x 8 example presented in the previous section, the result contains

three components: the background (component 0), an "object'" (component 1),

and a hole (component 2). The three components are shown below.

000+++00 .o 111. R e
++00+++20 11 .111., ++ . .+ + + .
O+0++ . ++ 1 .11 11 LF L F+ 2+ 4
0O+ + + 4 + 1111 1 LA+ + 22+
0O+ + + . + 111. .1 L+ + 2224
0+0++ . ++ .1 11.11 .+ L+ 2+ 4+
0+00+++0 .1 111 + A
00000+00 1 +

All pixels in the background are assigned the same region number, even
though in the 8 x 8 figure the background appears to consist of four
separate regions. This is because we assume the image is embedded in
an infinite field of Os. Any region of Os that touches the margin of

the picture will therefore be classified as background.

The algorithm extracts and identifies rconnected components, com-
putes useful feature information, and requires buffering of no more
than one line of data. This section describes the general procedure
for connectivity analysis. Section IV gives some details that uve

skipped in this section for the purpose of explaining the process more

easily.

Connectivity analysis, as implemented here, makes use of a data
structure, which we call the active line, to keep track of the process- i

ing. The active line consist of

e A linked 1ist of segment descriptors. Each segment descriptor
contain the starting and ending column numbers of a run-length
gegment, the component number to which the segment belongs, and

B-5

a pointer to the next segment descriptor. A dummy segment
descriptor gives the ending colummn number of the final run-
length segment.

* A pointer to the current segment being processed.

Before processing any data, the active line is initialized to con-~
tain a single segment descriptor, representing the background. Before
processing any row of run-length data, the pointer to the current segment
pointer must be initialized to point to the first segment. As we start

to process our example image, the state of affairs is thus:

Image so far: Pbbbbbbbbbbd

Active line:
Start column -infinity +infinity
Component number 0 dummy

Current segment: |

In the first row of example data, transitions were found in columns
4 and 7. This implies that the row consists of three run-length segments:
Os from ~infinity to (but not inclu&ing) column 4, 1s from column 4 to
(but not including) column 7, and Os from column 7 to +infinity. After
processing the first row we will want the data structure to represent

those three segments.

One procedure will examine each run-length segment in turn. Each
segment will take its turn as the new segment, represented by its start-
ing and ending column numbers. The new segment must bhe matched against
the partially completed analysis embodied in the current line. 1In par-
ticular, we must determine whether the new segment overlaps the current

segment, that is, the segment of the active line pointed to by the

current segment pointer. Three cases are possible:

- N em

Py

e T L

Case 1:

The two segments do not overlap because the new segment 1s to the
right of the current one (that is, the starting column number of
the new segment is larger than the ending column number of the
current segment).

Current segment: XXXXXXXX
New segment: XXXXXXXX

Case 2:

The two segments do not overlap because the new segment is to the
left of the current one (that is, the ending column number of the
new segment is smaller than the starting column number of the

] current segment).

Current segment: XXXXXXXX
New segment: XXXXXXXX

Case 3:
Neither Case 1 nor Case 2 obtain, and the segments overlap.

Current segment: XXXXXXXXXXXX
New segment: XXX XXXXX

Different actions must be taken in each of the three cases. We will
explain each case as it occurs in the course of analyzing our example

image.

The first segment of the new row goes from —infinity to 4. The
current segment pointer points to the first segment in the active line,
which goes from -infinity to +infinity. When these two segments are

compared, we find that Case 3 applies: the two segments overlap.

Action on Case 3:

Copy the start column number from the new segment to the current
one. Then advance the current segment pointer to the next segment B
in the active line.

Copying the starting number of the new segment (-infinity) to the

current segment results in no change in the data structure, because

Lk it o Kl 831 % o ot

-infinity was there to begin with. The current segment pointer is ad-

vanced to the next segment descriptor in the active-line list. After

processing the first segment in the first row, the active-line data

structure looks like this:

- e T e n W e = nnn
Ly

RS- P

Image so far: bbbbbbbbbbd
New segment: b00O

Active line:

Start ~inf +inf
Component 0 dummy

Current segment: |

We now analyze the next segment. This new segment runs from
columns 4 up to (but not including) column 7. The current segment
pointer now points to the dummy segment descriptor, which starts at
+infinity. Therefore Case 2 applies: The new segment does not match

any existing segment in the active line. Room must be made in the data
structure for it.

Action on Case 2:

! Insert two new segments descriptors (call them A and B) in the

1 active line before the current segment. Let the current segment

! pointer point to A. Copy the ending column number of the new
segment to the start column number of B. Choose an unused number
for a new component and let it be the component number for A. Copy
the component number from the segment preceding segment A, to B.
Now proceed as in Case 3.

The situation after processing the second segment in the first row
is thus:

Image so far: bbbbbbbbbb
b0O0OO
New segment: 111
Active line: (A) (B)
Start ~inf 4 7 +inf
Component 0 1 0 dummy

Current segment: |

Two new segment descriptors were inserted in the active line. Descriptor

A represents part of a newly discovered blob in the'image; it is assigned

component number 1. Descriptor B extends the background down the right
side of the new blob.

Descriptor B takes its starting column number from the ending
column number of the new segment (7) and its component number from the
segment before A (0). Having created a new pair of segment descriptors,

we can proceed to match the new segment to segment A by performing the

Case 3 action. The starting column number of the new segment (4) is
copied to descriptor A, and the current segment pointer is advanced to

point to segment B.

The third (and last) segment in the first row runs from column 7 }
to +infinity. This will be matched against the current segment, which ;
|

also runs from 7 to +infinity. This is another Case 3 overlap, and the

data structure after processing that new segment will be:

Image so far: bbbbbbbbbhb
b000111
New segment: 00b
Active line:
Start -inf 4 7 +inf
Component 0 1 0 dummy

Current segment: | ’

This concludes processing of the first row.

The second row has transitions at 1, 3, 5, and 8, or five segments
to be processed. The current segment pointer is reset to point to the

first active segment.

The first segment of this row runs from ~infinity to 1. When it
is matched to the first segment in the active line; a Case 3 overlap is
discovered. The appropriate action (extending the segment representing

the background) will be performed.

P QSR Y S

The next segment runs from column 1 to (but not including) column 3.
When it is matched against the current segment starting at colummn 4,

Case 2 applies. The newly discovered blob is assigned component number 2,

producing the following situation after processing the second segment: i

Image so far: Pbbbbbbbbb
b00011100HDb
3 New segment: > 22
| Active line: @) (®)
Component 0 2 i

B
Start -inf 1 3
]

Current segment:

+inf
dummy

The last three segments on this second row all produce Case 3 over-

laps when they are matched against the active line.

At the conclusion

of processing the second row, the following data structure obtains:

Image so far: bbbbbbbbbb
b000111005b
»b2200111
New segment: 0b
Active line:
Start -~inf 1 3 5
Component 0 2 0 1

Current segment:

+inf
dummy

Row 3 has transitions at columns 2, 3, 4, 6, 7, and 9. Matching

the seven segments of this row will result in four Case 3s, a Case 2,

and two more Case 3s. After processing the third row the following

will be the state of the data structure:

Image so far: bbbbbbbbbb
b0001110050b
b220011105b
b020113115b

Active line:

Start -inf 2 3 4 6
Component 0 2 1 3

Current segment:

B-10

9 +inf

In the fourth row there are transitions at columns 2, 6, 8, and 9,
for a total of five segments. The first two of these result in Case 3
overlaps. But when we match the third segment of the fifth row (which
runs from column 6 to 8) with the next segment of the active line
(running from column 3 to column 4) we discover that Case 1 holds. Here

is the situation as we discover the fact:

Image so far: bbbbbbbbbbd
b00011100b
b22001110%
b 0 2<0>1 1(3)1 1%
b 0(2222)
New segment: {0 01
Active line:) (B)
Start ~inf 2 3 4 6 7 9 +inf
Component 0 2 0 1 3 1 0 dummy

Current segment: |

The current segment in the active line, marked by '< >" above, is
not matched by any segment in the new row. The new segment, marked by
"[]" must eventually match the segment denoted by "()". We must
delete the unmatched segment "< >" from the active line. Furthermore,
the previous segment, marked by "()", forms a '"bridge'" between com-

ponents 1 and 2. We must merge the two components.

Action on Case 1:

Consider the segment in the active line before the current ome
(call it "A") and the segment after the current one (call it
"B"). 1If the component numbers of A and B are different, then
merge the two components by changing all instances of B's component
number in the active line to A's component number. Delete the
= current segment and segment B from the active line. Let the cur-
‘f rent segment pointer point to the segment after B, Now go back
: to the beginning of the entire matching procedure, matching the
new segment against the updated active line.

By this procedure, we merge components 1 and 2. The merging changes
the component numbers of the fourth and sixth segment descriptors in the

active line from 1 to 2. The current segment and segment B get deleted,

and the current segment pointer is advanced to point to the segment

B-11

e W

RERTTRN TNGIRIEY, TUPY IO T S e - smm e paeg
: k! : s e

;
|

w R

starting at column 6. After we have taken these steps, the data struc-

ture looks as follows:

*
Image so far:

bbbbbbbbbbd
b000222000%
b220022200
b020223220
New segment: b02222 33
Active line: (a)
Start -inf 2 6 7 9 +inf
Component 0 2 3 2 0 dummy
Current segment: !

Now the new segment may be matched anew against the active line and
current segment. This time around, the match iIs Case 3, as are the re-

mainder of matches in this fourth row. After finishing this row, the

state of the data structure is as shown below:

Image so far: bbbbbbbbdbbbd
b000222005bD
b22002220b
b020223225b%
Pp02222332hb

Active line:

Start -inf 2 6 8 9 +inf
Component : 0 2 3 2 0 dunmy

Current segment: |

In the fifth row, there are five segments with transitions at

columns 2, 5, 8, and 9. Only Case 3 overlaps occur.

*The "image so far" is not part of the data structure; it only is pre-
sented as an aid in visualization of the connectivity-analysis process.
We have changed all 1s in the image to 2s to indicate, conceptually, the
merging of the two components.

B-12

R o i NG L e

T

The sixth row has transitions at colummns 2, 3, 4, 6, 7, and 9. The
third segment (from columns 3 to 4) will generate a Case 2 match, the
others will all be Case 3. The new component created by the Case 2
match is assigned number 4. Here is what the data structure looks like

after processing that row:

e rprr——— Tty .'ﬂm’mw .

Image so far: bbbbbbbbbb
bP000222000
b220022200
b02022322%b
bP02222332hb
b022233320b ¢
b024223220b
Active line:
Start -inf 2 3 4 6 7 9 +inf
Component O 2 4 2 3 2 0 dummy
Current segment: |

In processing row 7, with transitions at 2, 3, 5, and 8 a Case 1
situation occurs. The analysis of component 3 is complete: Its segment
descriptor disappears from the active-line data structure. The twd
segments on either side of component 3 already have the same component

numbers, so no merging is necessary:

Image so far: bbbbbbbbbb
b000222005b '
b22002220hb
b02022322hb ;
b02222332hb 1
b02223332hb 3
b02422322b
b024422200b :
Active line:
Start -inf 2 3 5 8 +inf
Component 0 2 4 2 0 dummy
Current segment: |

; B-13

In row 8, there are transitions at columms 6 and 7. Another Case 1
situation occurs here, merging component 4 with component 0 (the back-

ground). Here is the situation after we have processed the eighth row:

Image so far: bbbbbbbbbbd
»P000222000
b220022200
bp020223226b
b02222332hb
b02223332%b
b020223225b%
b020022200
b0000020O0D

Active line:

Start —inf 6 7 +inf
Component 0 2 0 dummy

Current segment: |

After the last row of image data, another row of all Os will com-

plete the analysis, removing component 2 from the active line.

We have engaged in a little oversimplification in order to present
the basic ideas behind connecti@ity analysis as plainly as possible.
In the next section we will fix the algorithm to operate correctly in
all cases. But before reading on, turn to the beginning of this section,
where we presented the three components we wish the algorithm to extract.
You may verify that the results we have obtained are what was intended

except that different numbers were assigned.

IV CONNECTIVITY ANALYSIS IN DETAIL

The simplified algorithm presented in the previous section is de-
ficient, It has errors, and it doesn't compute any features of the blobs
or any perimeter lists. In addition, processing of some borderline
cases of overlapping segments was not adequately described. At the end
of this section the complete algorithm with its amendments and corrections

will be presented.

B~14

, P N SR 17 Gt ‘ g o1y

A

A. Handling Some Special Cases

Let us finish the processing of our test image. To complete the
analysis, a last row of Os running from ~infinity to +infinity is added
to the active-line data structure, leaving us with the following situa-

tion:

Image so far: bbbbbbbbbhbd
b000222000b
b22002220b%
b02022322%b
b022223320bD
bp022233325b
b020223225b
b020022205b
b0000020O0Db

New segment: bbbbbbbbdbbbd

Active line:

Start -inf 6 7 +inf
Component 0 2 0 dummy

Current segment: (

We have just processed a line with nothing in it, but the active
line incorrectly points to a segment there. Tt takes a Case 1 match
between segments to delete component 2 from the data structure, but
there is nothing left to process. What we must do is to check at the
end of each line whether the current segment pointer points to the dummy
segment at the end. If it does not, then the Case 1 processing must be

performed until the current segment pointer does point to the last seg-

ment.

A second error concerns the merging of two regions when a '"bridge"
connects them. The rule for Case 1 states that if the two component
numbers are different, then the number on the right replaces the number
on the left everywhere else in the active line. However, if the com-
ponent number on the right happens to be the backgroﬁnd, the replacement

would renumber the background. We wish the background to be always

component number 0 and must modify the renumbering rule accordingly.

TR o ;4R TR T, 1P ARG AN TG 2 2 b R
M - f PR

B. Blob Descriptors

The main reason for doing connectivity analysis is to obtain infor-
mation about the components we find thereby. The information we have
derived related to color, location, area, perimeter, and points to other
components that surround, neighbor, or form holes in the component we
are examining. The algorithms for deriving such information will be
described later in this report. Such information is stored in a blob

descriptor for each component.

We must modify our algorithm description to include the use of blob
descriptors. When a new component is started as a result of Case 2
processing, a new blob descriptor must be created. When segments are
removed from the active line in Case 1 processing, we must keep track
of the blob descriptors that are removed. Several segment descriptors
in the active-line data structure can have the same component number;
hence they can point to the same blob descriptor. Therefore, when a
segmént descriptor is removed as the result of Case 1 processing, the
algorithm must check to see if other segment descriptors in the active
line refer to the same component. If this is the last reference to

that component, its processing is finished.

¢

At this point, the blob descriptor describes a connected component
whose connectivity has been completely determined. Furthermore, the
extraction of blob features and perimeter lists is complete. We have
more than one option as to what to do with the blob descriptor. We can
pass the address of the completed blob descriptor to an application-
dependent subroutine that will do further processing, take some action
depending on what was found, or delete the blob descriptor to make its
memory space available for other blobs or other purposes. Alternatively,
the address of the blob descriptor can simply be added to a list of
visolated blobs in the image and further processing will be deferred
until the entire picture is analyzed. In the current implementation the
features and perimeter lists of the blob are written to output files,

and the blob descriptor is recycled to save memory space.

C. Treatment of Diagonally Adjacent Pixels

Two pixels belong to the same component if and only if there exists

a path, along adjacent elements of the same color, from one pixel to the

other. When dealing with points on a rectangular grid, it is reasonable f:
to ask whether diagonal points are adjacent. If diagonal points are to
be considered adjacent, then the components of an image are said to be
8-connected, since each pixel has eight connected neighbors. TIf diagonal

points are not considered adjacent, then the components are called 4-

connected. Our connectivity algorithm, as presented so far, finds the
4-connected components of an image. If we were to analyze the image of i
a checkerboard, then each square of the image, black or white, would be :

¥
a separate component.

It would be desirable to modify the connectivity algorithm so it

has the property that every component (except the background) is en-

e

tirely enclosed by one and only one component, which is of the opposite
color. Then every boundary between two regions is a closed curve that
separates an enclosing region from an enclosed region. The components

of a scene thus analyzed may be arranged hierarchically, each component

Tt N g AR LD

having a single superior (encloser) and zero or more inferiors (holes '

i
or enclosed regions). .

A way of achieving this is to specify that all white cells (1s)
are 8-connected and that all black cells (0s) are 4-connected. With
such a convention, the image of a checkerboard would be analyzed as a : ‘
number of individual white squares, all embedded in a single black
region (the background). To implement this requires modifying the
tests for overlap that determine Case 1, 2, or 3. The modification has B
to be such that one set of tests applies when a segment of 1ls is being

considered and a different set of tests applies for a segment of Os.

D. The Connectivity Algorithm

We shall now consolidate what has gone before. The algorithm
will be presented in an informal fashion. Operations such as creating
and modifying lists, or obtaining storage for a descriptor are imple-

mentation details that will not be mentioned here.

B-17

First, some definitions.

®* Segment descriptor is an array or a block of data that contains
four items: starting and ending column numbers, a pointer to a
blob descriptor, and a pointer to the next segment descriptor
in the active line.

¢ The active line is a linked list of segment descriptors. The
current segment pointer points to a segment descriptor on this
list. The active segment is the segment descriptor pointed to
by the current segment pointer.

i ¢ A blob descriptor is a record of data that contains at least one
item: a color, which may be either 0 or 1. Additional itmes
in a blob can be used for feature analysis, as will be described
later. A component number is a number that identifies a blob.

To process an image:

s Obtain a blob descriptor to represent the background. Set the
color word of the background blob to O.

¢ TInitialize the active line to contain two segment descriptors.
The first segment descriptor should have a column number smaller
than zero and a component number pointing to the background
blob. The column number of the second segment descriptor should
be a large positive number, a number greater than the number
of columns in the image. The component number of the second
descriptor is irrelevant.

¢ Process each row of the image, as described below.

e Finish by processing an extra row consisting of all zeros.
To process a row:
¢ Initialize the current segment pointer to point to the first

segment descriptor in the active line.

¢ Obtain the run-length representation of the row (see Section
II). The run-length data should start with a negative number
and end with a large positive number.

e For every pair of adjacent numbers in the run-length data, in
turn, call the segment-processing operation (defined below).

. While* the current segment pointer does not point to the last
: segment in the active line, perform the deletion operation (de-
fined below). Repeat this step until the current segment pointer
does point to the last segment.

*

In this context, the word while refers to a condition to check and an
action to perform. It means to repeat the action zero or more times
until the condition is not true.

B-18

To

process a new segment, given a starting column number and an

ending column number:

To

While the starting column number is greater than the ending
column number of the current segment in the active line, do the
deletion operation (defined below). (This is Case 1.)

If the ending column number is less than the starting column
number of the current segment, perform the insertion operation
(defined below), passing on the starting and ending numbers of
the segment. (This is Case 2.)

Do feature extraction for Case 3 processing.

Copy the starting and ending column numbers of the new segment
to the starting and ending column numbers of the current segment.

Advance the current segment pointer to point to the next segment
descriptor in the active line.

perform the insertion operation, given starting and ending

column numbers:

To

Obtain the component number of the segment descriptor preceding
the current segment. Call that component the surrounding com-
ponent.

Obtain a new blob descriptor. Call it the new component. Set
the color word of the new component to the opposite of the color
of the surrounding component.

Obtain two new segment descriptors and insert them in the active
line immediately before the current segment, calling the first
segment "A" and the second "B." Segment A receives the new com-
ponent number and the starting column number. Segment B re-
ceives the surrounding component number and the ending column
number.

perform the deletion operation:

Call the component number of the current segment the terminated
component. Call the component number of the segment preceding
the current one the left component and the component number of
the segment following the current one the right component. Call

the left component the replacing component and the right component

the replaced component. If the right component points to the
background, then call it the replacing component and the left
component the replaced component; otherwise, call the left
component replacing and the right component replaced.

Do feature extraction for Case 1 processing.

If the replacing component and the replaced component are dif-
ferent, then find all instances of the replaced component number
in the active line, and change them to the replacing number.

B-19

s o Al

e

* Delete the current segment and the segment following the cur-
rent one from the active line. Let the current segment pointer
point to the first segment after the deleted one.

e Search for instances of the terminated component number in the
active line. 1If there are no remaining instances, call
application-dependent subroutines, as appropriate, passing the
address of the terminated component's blob descriptor.

V EXTRACTION OF FEATURES

The preceding sections outlined a procedure for isolating connected
components (blobs) from one another in an image. The results of the
analysis are a number of blob descriptor records that contain information
about the blob. Each blob descriptor consists of several features or

characteristics of interest.

A. Color

The simplest feature is color. The color of a blob will be O
if the blob is black and 1 if it is white. 1If the color of the background
is appropriately set up at initialization time, then the following will
ensure that each blob descriptor subsequently created has the correct

color: whenever a new blob descriptor is created (Case 2) obtain the

color feature of the surrounding blob and store the opposite color in

the appropriate place in the new blob descriptor.

B. Parent, Child, and Sibling

An important class of features describes inclusion relationships

among blobs. Because we have been careful in the way connections are

AN o

made between diagonally adjacent pixels, we can guarantee that every
component (except the background) has one and only one surrounding
component blob. We call any blob's surrounder its parent, any holes
(or blobs enclosed by this one) children, and other blobs enclosed by
the same parent siblings.

At blob creation time (Case 2) a pointer to the surrounding blob

descriptor can be stored as the new blob's parent feature. The child

B-20

feature of the new blob is set to 0. We must also record the fact that
the parent blob has an additional child. There is only a single entry
in the blob descriptor for the child feature. The child feature of any
blob points to the most recently created surrounded blob; the sibling
feature of that most recently created child points to the next most
recently created child, and so forth. The procedure to follow in Case 2
processing is as follows: Copy the child feature of the surrounding
blob to the sibling feature of the new blob. Set the child feature of

the surrounding blob to point to the new blob.

Case 1 processing frequently causes two blobs to be merged into
one. Topological considerations guarantee that the two blobs to be
merged will have the same color feature and the same parent. But to
preserve the integrity of the parent-child-sibling links, several
actions must be performed. In each of the children of the replaced blob,
the parent feature must be changed to point to the replacing blob. All
the children of the replaced blob must be concatenated onto the sibling
list of the children of the replacing blob. The pointer to the replaced
blob itself must be removed from the sibling list that includes both
the replaced and the replacing blobs. Finally, if the common parent of
the two merged blobs points to the replacing blob as its child feature,
that child feature must be replaced by the contents of the sibling
feature of the replaced blob.

A greal deal of bookkeeping overhead is eliminated by recording only
parent relationships. The children and siblings can be regenerated
from the list of parent relationships. In the current implementation of
LINEBYLINE, the parent relationship is not computed because it is not

used by subsequent programs.

C. The Bounding Rectangle

The bounding rectangle of a blob is specified by the minimum and
maximum values of x and y over the blob. It is easily extracted as
follows: when a blob is created (Case 2), copy the current value of y
(which is constant across an entire line of input) to the new blob's

ymin feature. At the same time place the starting column number (of the

B-21

S ot b 2

L

contrasting run-length segment) in the new blob's xmin feature and the

ending column number in the blob's ymin feature.

For each run-length segment added to a blob (Case 3), set the xmin
feature to the smaller of (1) the starting column number and (2) the
previous value of the xmin feature. Do the analogous operation for the
xmax feature and the ending column number. The ymax feature is set to

the current line number.

When two blobs are merged as a result of Case 1 processing, the
ymin, xmin, and xmax features of the replacing blob must take the ex-

treme values of the two blobs to be merged.

D. Area and Center of Gravity

The area of a blob is set to O when the blob descriptor is created.
When a new line segment of the blob is processed, the number of pixels
in the segment is added to the area of the blob. When two blob: are

merged, their areas are added together.

The center of gravity (CG) is recomputed after each new line segment
is added to the blob. The updated CG is a weighted average of the CG
of the new line and the CG of the previously processed portion of the
blob. The weights are proportional to the areas of the new line segment
and the previously processed portion, respectively. When two blobs are
merged, a weighted average of the two CG's is computed in a similar

manner as above.

E. Perimeter Lists

Associated with each inked blob is a set of perimeter points. Be-
cause each line of the image is processed sequentially, the perimeter
points are obtained in a somewhat haphazard manner. During processing,
the perimeter of a simple convex blob has two uncompleted ends: One at
the starting column of the active line segment (the left end), and one
at the ending column of the active line segment (the right end). The
perimeter points are stored as a singly linked list called a perimeter
section., The right endpoint is at the beginning of the list, and the

B-22

.- - ‘YW'J.(
: . e
- . . . , ‘3:_'& ok

> 5' "“'-'5, :'.7 el ~~";-,,:"'— 2%y 3 S it
s R S TR) rRan v S ” R4 o'kl W I AR

: i oyt

!
|
I

PSSR SEFT N

left endpoint is at the end of the list. When there is more than one

active line segment corresponding to the same blob, one perimeter section
is associated with each active line segment. The perimeter sections
are arranged as a doubly linked ring. This structure is illustrated

below, using component 2 in the previous example after six lines of

processing.

[=D

w

LI

The structure of the perimeter section records and perimeter point

records in the illustration above are shown here:

left

right line

previous section column

next section next point
Perimeter section record Perimeter point record

When each new line of pixels 1s processed, the lists of perimeter
points are modified according to which case applies. 1In all cases

perimeter lists are compiled for inked blobs only.

Case 3 requires the simplest processing. When a new line segment
is added to an inked blob, the left end of the associated perimeter
section and the right end of the next perimeter section are extended.

An example 1is shown below:

B-23

POV ST T

Image so far: bbbbbbbbbb
bC1l11131115b
bp111111115%
1110011050
b

New segment: {111]

Perimeter lists
before new seg-
ment is added:

c1Y

Perimeter lists
after new seg-
ment is added:

Ld

For Case 2‘(insertion of a new segment) there are two subcases.

Subcase A occurs if the new segment has the color ink; otherwise Sub-

case B occurs. In Subcase A a new perimeter section for the new blob is

created and will contain all of the points in the new segment. An

[S,

example is shown below.

Image so far: bbbbbbbbbbd)
b000000CO0O0D %

b0O b

New segment: 111] i
1

=] 5

Perimeter list after 2l (] 2] 3
newv segment is added: 3 — 1
Sy dad = '

In Subcase B the perimeter section of the surrounding segment is

split into two perimeter sections. An example is shown below.

B-24

Image so far:

New segment:

Perimeter lists
before new seg-
ment is added:

Perimeter lists
after new seg-
ment is added:

bbbbbbbbbbd
b0111121200%b
011111100
b011

(0 o]

LI

For Case 1 (deletion of a segment) there are also two subcases.

Subcase A occurs 1if the deleted segment has the color ink; otherwise

Subcase B occurs.

terminating blob are merged.

In Subcase A two adjacent perimeter sections of the

If the terminating blob has only one

perimeter section, its left and right ends are joined, and processing

of this blob is finished.

Image so far:

New segment:

Perimeter lists
before new seg-
ment is added:

Perimeter lists
after new seg-
ment is added:

An example is shown below.

bbbbbbbbbb
b001111000b
b011111000b
b

(0 0]

DY

B-25

e oa ™

T

In Subcase B the perimeter sections associated with the replacing h
and replaced components are merged. If the replacing and replaced
components belong to different blobs, the two blobs will be merged and

the two rings of perimeter sections will be merged into one ring. An ?

example is shown below.)

Image so far:

T oo
o
o
cod
cod
-=o o
O

New segment: [1111111]

Perimeter lists
before new seg-
ment is added:

Perimeter lists
after new seg-
ment is added:

nnu

To save space during processing of the image, and to store the
completed perimeter lists in less disk space, the perimeter lists are
periodically packed. The variable LINEGROUP controls how often the
lists are compressed (the words "pack" and "compress' mean the same

thing). For example, when LINEGROUP = 25, compression occurs at lines k

25, 50, 75, etc. Those points in the list that previously have been
compressed are skipped. When a perimeter list has been completed and

is ready to be written to disk, it is unpacked and then repacked if

the Boolean variable FINALPACKING is true. If FINALPACKING is false,

the perimeter list is only unpacked. Currently, the value of FINALPACKING
is specified by the user at the beginning of LINEBYLINE.

Each unpacked perimeter point consists of two 16-bit integers with

values between 1 and 512. One integer is for the line number Y and the

B-26

second integer is for the column number X. Compression is achieved by

converting the perimeter information from a series of (Y,X) points to a
starting (Y,X) point and a series of directions from one point to the

next. The starting point has the same format as an unpacked perimeter
point, except that 512 is added to the column number. Therefore, a

column number greater than 512 identifies that point as the beginning of

a series of compressed points. Because the perimeter is 8-connected, there
are eight possible directions indicating the positions of subsequent
perimeter points. They are numbered from 0 to 7 and are assigned as

follows:

Change in X
-1 01
-1 3 2 1
Change inY 0 4 0
1 5 6 7

For example, if the perimeter list of the last example above (deletion
of a segment, Subcase B) were to be compressed starting with the point
(3,1), the direction to the next point (2,1) would be 2; the direction
from (2,1) to the next point (1,1) would be again 2; and the direction
from (1,1) to the next point (1,2) would be O.

Each of the eight directions can be represented as a 3~bit code
(000 = 0, 001 = 1, 010 = 2, ..., 111 = 7). Five direction codes fill
15 bits of a 16-bit word. The 16th bit (the sign bit) is set equal to 1
to indicate that the word contains compressed perimeter points. Each
set of five direction codes is stored alternately in the line and column
locations of the perimeter point record. If we continue the example,
the first five directions would be 2, 2, 0, 6, and 7. The would be

coded and placed in a 16-1.it word as:

1 1 11 1.1 0 00O 01 0 010

16 151413 121110 9 8 7 6 5 4 3 2 1

B-27

- SR O PR PRty v it e 2 ey
g By s L. L e ; . 2
L L. A X " 5 Aedr Y i EAalde A s
. . 4. AT ¥l ad 2 leut H
RS IR 4, >4+ . S gain .

e s GO

P T

This word is interpreted as the two's complement integer -1756 octal,
or -1006 decimal. The second five directions are 0, 1, 1, 0, and 5.
Their bit representation is:

1 1 01 6 60 001 0O01 000

l6 151413 121110 9 8 7 6 5 4 3 2 1

This is interpreted as -27670 octal, or -12216 decimal. Hence, the
first 11 perimeter points are compressed into the space of two perimeter
point records as follows: (3,513), (-1006,-12216).

Compression of groups of less than 10 points is not attempted.
Therefore, during processing, the list of compressed points is inter-
spersed with uncompressed points. In addition, there are usually a

few uncompressed points at the end of the list. In our example, the

12th point, (3,8) remains uncompressed. The completely compressed
~1006! Jo—
-12216 513

list is therefore:
8] :}
i— —

The unpacking process is just the reverse of the packing process.

nnu

The column number of each perimeter point is examined. If it is greater
than 512, the start of a series of compressed points has been detected,

Subtracting 512 from the column number results in the (Y,X) coordinate :

of the starting point. The sign of the column number of the next
perimeter point is examined. If it is less than or equal to 0, then
compression of 10 points has been detected. The locations of these .{
points are recomputed from the 3-bit direction codes that are extracted

from the two 16-bit words. This process continues until a perimeter

point record with a column number greater than 0 is encountered.

B-28

VI HIERARCHY OF PROCEDURES

This chart shows the hierarchy of procedures within LINEBYLINE.
A1l of the procedures that are called by each procedure are indented
and listed below.

LINEBYLINE
PACKPERIMS
PKPERIMS
COMPRESSED
UNPACKPERIMS
UNPACKS5
DIRPOINT
DELETEPERIMS
NEWPERIM
DIRECTION
GETLINE
ENDOFBLOCK
SETLINE
CREATERUNLENGTHS
ADDRUNLENGTHS
PROCESSLINE
DELETESEGMENT
ADDLEFTPERIMPOINT
~ NEWPERIM
ADDRIGHTPERIMPOINT
NEWPERIM
RECORDBLOB
WRITEPERIMS
WRITEPOINTS
PKPERIMS
(see above)
COUNTANDWRITE
COMPRESSED
UNPACKPERIMS
(see ahove)
WRITEPOINTS
(see above)
DELETEPERIMS
WRITEBLOB
DELETEBLOB
INSERTSEGMENT
NEWBLOB
ADDRIGHTPERIMPOINT
(see above)
CASE3PROCESSING
UPDATEPERIMS
ADDLEFTPERIMPOINT
(see above)
ADDRIGHTPERIMPOINT
(see above)

B-29

e

AR

VII INPUT IMAGE FORMAT

The binary image that is read by LINEBYLINE is 512 x 512 pixels.
There are 8 pixels per byte (each pixel is one bit). Therefore, one
line of data occupies 64 bytes, and the entire image occupies 512 x 64 =
32K bytes on disk. The data is read one byte (one character in PASCAL)

at a time.

However, there is one small difference due to the PDP 11/40 version
of PASCAL. The bytes are stored on disk in blocks of 512 bytes. The
PASCAL 1/0 processor interprets a block boundary as an extra byte.

To compensate for this inaccuracy, the LINEBYLINE software skips an
"imaginary" byte once every 512 times (when the Boolean function
ENDOFBLOCK is true). On most computer systems, this would not be neces-

sary.

B-30

Appendix C

ANNOTATIONS FOR THE SEPARATE SPSS RESULT PACKAGE
(Submitted Separately)

Cc-1

[. R A 7y JTET TN TR o T T Wy % R

e

!,

W

k. canadit

Appendix C
ANNOTATIONS FOR THE SPSS RESULT PACKAGE
(Submitted Separately)

The printout of an SPSS analysis contains several parts. Following

is a description of each part with the page number of the listing on

which that part of the printout begins. Preceding the actual output, ;
some initial information is listed, including the control file used
to run SPSS and the data that are to be read by SPSS. These data are
ordered as a sequence of trials. The numbers represent: Subject code
(1-30), session number, trial number, and 29 feature values.
e Page 1: SPSS description; format of the data that are to be ;
read in.

e Page 3: A partial list of the data that were read in. Each
trial is listed, but only five selected feature values are
listed.

ww i Ty e -

e Page 9: SPSS options used.

e Page 10: Number of trials per subject (group).

e Page 10: Feature-value means for each subject.

e Page 12: Feature-value standard deviations for each subject.

e Page 15: Wilk's lambda and univariate F-ratios for each feature.
Each of these numbers is related to the discriminating power of
the specific feature. For Wilk's lambda, the smaller the
number, the better is the discriminating power of that feature.
The opposite is true for F-ratios: The larger the F-ratioc, the
greater is the discriminating power of that feature.

e Page 17: Within-groups correlation matrix. This is similar to N
the covariance matrix, except that each feature mean is first 2
normalized to mean = 0 and standard deviation = 1 before calcu-
lation of the covariance. A number in this matrix that approaches
1 indicates a high degree of correlation between those two
features..)

/
e Page 19: Prior probability of finding any particular subject
within the population. A priori, this probability was set to
be equal for each subject.

Page 1Y: ‘lwenty-nine discriminant fuict.ica. wer. determined.
The data in this chart demonstrate the declining discriminating
power of each additional discrimipant function.

Page 20: The standard discriminant-function coefficients are

listed. The product of all normalized feature values and the

appropriate discriminant-function coefficient will be the dis-
criminant score used to classify each subject.

Page 23: Here start listings of both the unstandardized
discriminant-function coefficients and the location in 29-
dimensional space of the centroids of each group. The centroid
is the mean discriminant-function score for each subject.

Page 30: Classification results: Actual group is the subject
code number; 'highest group D**2" is the classification result.
In all cases the group was classified correctly. "Probability
P(G/x)" is the probability that the sample belongs to Group G

given that the discriminant measure x was observed. "Probabilitv

P(x/G)" is the probability that the discriminant measure x wculd
be observed given that the sample is from Group G. The actuel
discriminant scores (upon which the classification is based) are
listed on the far right,.

Page 78: Territorial map of first two (most discriminatirny)
discriminant functioms. This is a 2D representation of vk data.
The centroids (*) are separated by numbers er letters {correspond-
ing to that particular group, numbered 0-9 or A-Z) that deiine
the equal probability lines between groups.

4

Ca

it A dans e L

MISSION
of
Rome Awr Development Center

RADC plans and executes research, development, test and
selected acquisition proghams in suppornt of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering dupport within areas of technical competence
48 provided to ESD Progham 0ffices (POs) and othen ESD
elements. The principal technical mission areas are
communications, electromagnetic gudidance and contrnol, sunr-
veilllance of ground and aerospace obfects, intelligence data
collection and handling, Ainformation system technology,
Lonosphenic propagation, sofid state sciences, microwave
physics and electronic neliability, maintainability and
compatibility.

